These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 2517459)

  • 1. Control of forelimb muscle activity by populations of corticomotoneuronal and rubromotoneuronal cells.
    Fetz EE; Cheney PD; Mewes K; Palmer S
    Prog Brain Res; 1989; 80():437-49; discussion 427-30. PubMed ID: 2517459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encoding of motor parameters by corticomotoneuronal (CM) and rubromotoneuronal (RM) cells producing postspike facilitation of forelimb muscles in the behaving monkey.
    Cheney PD; Mewes K; Fetz EE
    Behav Brain Res; 1988; 28(1-2):181-91. PubMed ID: 3132935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primate rubromotoneuronal cells: parametric relations and contribution to wrist movement.
    Mewes K; Cheney PD
    J Neurophysiol; 1994 Jul; 72(1):14-30. PubMed ID: 7965000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of rubromotoneuronal cells identified by spike-triggered averaging of EMG activity in awake monkeys.
    Cheney PD
    Neurosci Lett; 1980 Apr; 17(1-2):137-42. PubMed ID: 6820481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response patterns and postspike effects of premotor neurons in cervical spinal cord of behaving monkeys.
    Fetz EE; Perlmutter SI; Maier MA; Flament D; Fortier PA
    Can J Physiol Pharmacol; 1996 Apr; 74(4):531-46. PubMed ID: 8828898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects on wrist and digit muscle activity from microstimuli applied at the sites of rubromotoneuronal cells in primates.
    Cheney PD; Mewes K; Widener G
    J Neurophysiol; 1991 Dec; 66(6):1978-92. PubMed ID: 1812230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of single intracortical microstimuli in motor cortex on activity of identified forearm motor units in behaving monkeys.
    Palmer SS; Fetz EE
    J Neurophysiol; 1985 Nov; 54(5):1194-212. PubMed ID: 3001235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response patterns and force relations of monkey spinal interneurons during active wrist movement.
    Maier MA; Perlmutter SI; Fetz EE
    J Neurophysiol; 1998 Nov; 80(5):2495-513. PubMed ID: 9819258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facilitation and suppression of wrist and digit muscles from single rubromotoneuronal cells in the awake monkey.
    Mewes K; Cheney PD
    J Neurophysiol; 1991 Dec; 66(6):1965-77. PubMed ID: 1812229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discharge properties of primate forearm motor units during isometric muscle activity.
    Palmer SS; Fetz EE
    J Neurophysiol; 1985 Nov; 54(5):1178-93. PubMed ID: 4078614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of corticomotoneuronal postspike facilitation and reciprocal suppression of EMG activity in the monkey.
    Kasser RJ; Cheney PD
    J Neurophysiol; 1985 Apr; 53(4):959-78. PubMed ID: 3998800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of the monkey corticomotoneuronal system to the control of force in precision grip.
    Maier MA; Bennett KM; Hepp-Reymond MC; Lemon RN
    J Neurophysiol; 1993 Mar; 69(3):772-85. PubMed ID: 8463818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparable patterns of muscle facilitation evoked by individual corticomotoneuronal (CM) cells and by single intracortical microstimuli in primates: evidence for functional groups of CM cells.
    Cheney PD; Fetz EE
    J Neurophysiol; 1985 Mar; 53(3):786-804. PubMed ID: 2984354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional relations between primate motor cortex cells and muscles: fixed and flexible.
    Fetz EE; Cheney PD
    Ciba Found Symp; 1987; 132():98-117. PubMed ID: 3123173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of primate spinal interneurons in preparation and execution of voluntary hand movement.
    Fetz EE; Perlmutter SI; Prut Y; Seki K; Votaw S
    Brain Res Brain Res Rev; 2002 Oct; 40(1-3):53-65. PubMed ID: 12589906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corticomotoneuronal cells contribute to long-latency stretch reflexes in the rhesus monkey.
    Cheney PD; Fetz EE
    J Physiol; 1984 Apr; 349():249-72. PubMed ID: 6737294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of facilitation and suppression of antagonist forelimb muscles from motor cortex sites in the awake monkey.
    Cheney PD; Fetz EE; Palmer SS
    J Neurophysiol; 1985 Mar; 53(3):805-20. PubMed ID: 2984355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticomotoneuronal contribution to the fractionation of muscle activity during precision grip in the monkey.
    Bennett KM; Lemon RN
    J Neurophysiol; 1996 May; 75(5):1826-42. PubMed ID: 8734583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trained slow tracking. II. Bidirectional discharge patterns of cerebellar nuclear, motor cortex, and spindle afferent neurons.
    Schieber MH; Thach WT
    J Neurophysiol; 1985 Nov; 54(5):1228-70. PubMed ID: 2934519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monosynaptic rubrospinal projections to distal forelimb motoneurons in the cat.
    Fujito Y; Aoki M
    Exp Brain Res; 1995; 105(2):181-90. PubMed ID: 7498371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.