BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25174677)

  • 1. Effect of membrane-bound aldehyde dehydrogenase-encoding gene disruption on glyceric acid production in Gluconobacter oxydans.
    Habe H; Sato S; Fukuoka T; Kitamoto D; Sakaki K
    J Oleo Sci; 2014; 63(9):953-7. PubMed ID: 25174677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol.
    Habe H; Shimada Y; Yakushi T; Hattori H; Ano Y; Fukuoka T; Kitamoto D; Itagaki M; Watanabe K; Yanagishita H; Matsushita K; Sakaki K
    Appl Environ Microbiol; 2009 Dec; 75(24):7760-6. PubMed ID: 19837846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of the membrane-bound alcohol dehydrogenase-encoding gene improved glycerol use and dihydroxyacetone productivity in Gluconobacter oxydans.
    Habe H; Fukuoka T; Morita T; Kitamoto D; Yakushi T; Matsushita K; Sakaki K
    Biosci Biotechnol Biochem; 2010; 74(7):1391-5. PubMed ID: 20622460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective improvement of the activity of membrane-bound alcohol dehydrogenase by overexpression of adhS in Gluconobacter oxydans.
    Zhang H; Shi L; Lin J; Sun M; Wei D
    Biotechnol Lett; 2016 Jul; 38(7):1131-8. PubMed ID: 27015861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterologous expression of membrane-bound alcohol dehydrogenase-encoding genes for glyceric acid production using Gluconobacter sp. CHM43 and its derivatives.
    Habe H; Sato Y; Tani H; Matsutani M; Tanioka K; Theeragool G; Matsushita K; Yakushi T
    Appl Microbiol Biotechnol; 2021 Sep; 105(18):6749-6758. PubMed ID: 34453563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the enzymes responsible for 3-hydroxypropionic acid formation and their use in improving 3-hydroxypropionic acid production in Gluconobacter oxydans DSM 2003.
    Zhu J; Xie J; Wei L; Lin J; Zhao L; Wei D
    Bioresour Technol; 2018 Oct; 265():328-333. PubMed ID: 29913287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of cell growth and glycolic acid production by overexpression of membrane-bound alcohol dehydrogenase in Gluconobacter oxydans DSM 2003.
    Zhang H; Shi L; Mao X; Lin J; Wei D
    J Biotechnol; 2016 Nov; 237():18-24. PubMed ID: 27619641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly selective oxidation of benzyl alcohol using engineered Gluconobacter oxydans in biphasic system.
    Wu J; Li MH; Lin JP; Wei DZ
    Curr Microbiol; 2011 Apr; 62(4):1123-7. PubMed ID: 21140150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a Gluconobacter frateurii mutant to prevent dihydroxyacetone accumulation during glyceric acid production from glycerol.
    Habe H; Shimada Y; Fukuoka T; Kitamoto D; Itagaki M; Watanabe K; Yanagishita H; Yakushi T; Matsushita K; Sakaki K
    Biosci Biotechnol Biochem; 2010; 74(11):2330-2. PubMed ID: 21071844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S
    Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of glyceric acid by Gluconobacter sp. NBRC3259 using raw glycerol.
    Habe H; Shimada Y; Fukuoka T; Kitamoto D; Itagaki M; Watanabe K; Yanagishita H; Sakaki K
    Biosci Biotechnol Biochem; 2009 Aug; 73(8):1799-805. PubMed ID: 19661679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane-bound alcohol dehydrogenase is essential for glyceric acid production in Acetobacter tropicalis.
    Habe H; Sato S; Fukuoka T; Kitamoto D; Yakushi T; Matsushita K; Sakaki K
    J Oleo Sci; 2011; 60(9):489-94. PubMed ID: 21852749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical mutagenesis of Gluconobacter frateurii to construct methanol-resistant mutants showing glyceric acid production from methanol-containing glycerol.
    Sato S; Kitamoto D; Habe H
    J Biosci Bioeng; 2014 Feb; 117(2):197-199. PubMed ID: 23916855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H.
    Hölscher T; Görisch H
    J Bacteriol; 2006 Nov; 188(21):7668-76. PubMed ID: 16936032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and characterization of a class III alcohol dehydrogenase gene from Gluconobacter frateurii in the presence of methanol during glyceric acid production from glycerol.
    Sato S; Morita N; Kitamoto D; Habe H
    J Oleo Sci; 2013; 62(10):835-42. PubMed ID: 24088521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343.
    Gätgens C; Degner U; Bringer-Meyer S; Herrmann U
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):553-9. PubMed ID: 17497148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Change in product selectivity during the production of glyceric acid from glycerol by Gluconobacter strains in the presence of methanol.
    Sato S; Morita N; Kitamoto D; Yakushi T; Matsushita K; Habe H
    AMB Express; 2013 Apr; 3(1):20. PubMed ID: 23547945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane-bound sorbitol dehydrogenase is responsible for the unique oxidation of D-galactitol to L-xylo-3-hexulose and D-tagatose in Gluconobacter oxydans.
    Xu Y; Ji L; Xu S; Bilal M; Ehrenreich A; Deng Z; Cheng H
    Biochim Biophys Acta Gen Subj; 2023 Feb; 1867(2):130289. PubMed ID: 36503080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans.
    Li MH; Wu J; Liu X; Lin JP; Wei DZ; Chen H
    Bioresour Technol; 2010 Nov; 101(21):8294-9. PubMed ID: 20576428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293.
    Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.