These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 25175154)

  • 1. Shear effects on aluminum phosphate adjuvant particle properties in vaccine drug products.
    Kolade OO; Jin W; Tengroth C; Green KD; Bracewell DG
    J Pharm Sci; 2015 Feb; 104(2):378-87. PubMed ID: 25175154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro.
    Morefield GL; Sokolovska A; Jiang D; HogenEsch H; Robinson JP; Hem SL
    Vaccine; 2005 Feb; 23(13):1588-95. PubMed ID: 15694511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Formulation and Suspension Properties on Redispersion of Aluminum-Adjuvanted Vaccines.
    Langford A; Horwitz T; Adu-Gyamfi E; Wiley C; Holding E; Zimmermann D; Ignatius AA; Ohtake S
    J Pharm Sci; 2020 Apr; 109(4):1460-1466. PubMed ID: 31930978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Analysis of Vaccine Antigen Adsorption to Aluminum Adjuvant Using an Automated High-Throughput Method.
    Ahl PL; Wang SC; Chintala R; Mensch C; Smith WJ; Wenger M; Blue J
    PDA J Pharm Sci Technol; 2018; 72(2):149-162. PubMed ID: 29343619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the Sedimentation Behavior of Aluminum Phosphate: Influence of pH, Ionic Strength, and Model Antigens.
    Muthurania K; Ignatius AA; Jin Z; Williams J; Ohtake S
    J Pharm Sci; 2015 Nov; 104(11):3770-3781. PubMed ID: 26205044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiation of the immune response to non-adsorbed antigens by aluminum-containing adjuvants.
    Romero Méndez IZ; Shi Y; HogenEsch H; Hem SL
    Vaccine; 2007 Jan; 25(5):825-33. PubMed ID: 17014935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Propylene Glycol-Mitigated Freeze/Thaw Agglomeration of a Frozen Liquid nOMV Vaccine Formulation by Static Light Scattering and Micro-Flow Imaging.
    Mensch CD; Davis HB; Blue JT
    PDA J Pharm Sci Technol; 2015; 69(4):477-98. PubMed ID: 26242785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of particle size and antigen binding on effectiveness of aluminum salt adjuvants in a model lysozyme vaccine.
    Clausi A; Cummiskey J; Merkley S; Carpenter JF; Braun LJ; Randolph TW
    J Pharm Sci; 2008 Dec; 97(12):5252-62. PubMed ID: 18398901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation of botulinum neurotoxin heavy chain fragments for vaccine development: mechanisms of adsorption to an aluminum-containing adjuvant.
    DePaz RA; Henderson I; Advant SJ
    Vaccine; 2005 Jul; 23(31):4029-35. PubMed ID: 15963360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting alum-protein interactions.
    Huang M; Wang W
    Int J Pharm; 2014 May; 466(1-2):139-46. PubMed ID: 24607202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of particulates in vaccine formulations containing aluminum phosphate.
    Lin X; Hudock H; Arumugham R; Loun B
    Vaccine; 2008 Dec; 26(52):6814-7. PubMed ID: 18950668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of stabilizers on the destabilization of proteins upon adsorption to aluminum salt adjuvants.
    Peek LJ; Martin TT; Elk Nation C; Pegram SA; Middaugh CR
    J Pharm Sci; 2007 Mar; 96(3):547-57. PubMed ID: 17080408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Key Process Parameters Study for the Fill Finish of Vaccines Containing Aluminum Hydroxide Adjuvant.
    Yang Y; Su D; Yao X; Jin Z; Chen Q; Wu H; Guo J
    J Pharm Sci; 2024 Jun; 113(6):1478-1487. PubMed ID: 38246363
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Khatun R; Hunter HN; Sheng Y; Carpick BW; Kirkitadze MD
    J Pharm Biomed Anal; 2018 Sep; 159():166-172. PubMed ID: 29990882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Change in the degree of adsorption of proteins by aluminum-containing adjuvants following exposure to interstitial fluid: freshly prepared and aged model vaccines.
    Shi Y; HogenEsch H; Hem SL
    Vaccine; 2001 Oct; 20(1-2):80-5. PubMed ID: 11567749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods to Prepare Aluminum Salt-Adjuvanted Vaccines.
    Thakkar SG; Cui Z
    Methods Mol Biol; 2017; 1494():181-199. PubMed ID: 27718194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of size on particulate vaccine adjuvants.
    Shah RR; O'Hagan DT; Amiji MM; Brito LA
    Nanomedicine (Lond); 2014 Dec; 9(17):2671-81. PubMed ID: 25529570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freeze-thaw stress of Alhydrogel ® alone is sufficient to reduce the immunogenicity of a recombinant hepatitis B vaccine containing native antigen.
    Clapp T; Munks MW; Trivedi R; Kompella UB; Braun LJ
    Vaccine; 2014 Jun; 32(30):3765-71. PubMed ID: 24856785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of synergistic effect of biodegradable polymeric nanoparticles and aluminum based adjuvant for improving vaccine efficacy.
    Bansal V; Kumar M; Dalela M; Brahmne HG; Singh H
    Int J Pharm; 2014 Aug; 471(1-2):377-84. PubMed ID: 24939616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilised aluminium phosphate nanoparticles used as vaccine adjuvant.
    Vrieling H; Espitia Ballestas M; Hamzink M; Willems GJ; Soema P; Jiskoot W; Kersten G; Metz B
    Colloids Surf B Biointerfaces; 2019 Sep; 181():648-656. PubMed ID: 31212137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.