BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 25175238)

  • 1. The physicochemical characterization and in vivo response of micro/nanoporous bioactive ceramic particulate bone graft materials.
    Tovar N; Jimbo R; Witek L; Anchieta R; Yoo D; Manne L; Machado L; Gangolli R; Coelho PG
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():472-80. PubMed ID: 25175238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics.
    Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C
    Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Healing of rabbit calvarial bone defects using biphasic calcium phosphate ceramics made of submicron-sized grains with a hierarchical pore structure.
    Park JW; Kim ES; Jang JH; Suh JY; Park KB; Hanawa T
    Clin Oral Implants Res; 2010 Mar; 21(3):268-76. PubMed ID: 20074242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application.
    Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL
    Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new HA/TTCP material for bone augmentation: an in vivo histological pilot study in primates sinus grafting.
    Piccinini M; Rebaudi A; Sglavo VM; Bucciotti F; Pierfrancesco R
    Implant Dent; 2013 Feb; 22(1):83-90. PubMed ID: 23296033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone regenerative potential of modified biphasic graft materials.
    Khan R; Witek L; Breit M; Colon D; Tovar N; Janal MN; Jimbo R; Coelho PG
    Implant Dent; 2015 Apr; 24(2):149-54. PubMed ID: 25734946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the osteoconductive properties of three particulate bone fillers in a rabbit model: allograft, calcium carbonate (Biocoral®) and S53P4 bioactive glass.
    Gunn JM; Rekola J; Hirvonen J; Aho AJ
    Acta Odontol Scand; 2013 Sep; 71(5):1238-42. PubMed ID: 23294163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization.
    Daculsi G; LeGeros RZ; Nery E; Lynch K; Kerebel B
    J Biomed Mater Res; 1989 Aug; 23(8):883-94. PubMed ID: 2777831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new in vivo screening model for posterior spinal bone formation: comparison of ten calcium phosphate ceramic material treatments.
    Wilson CE; Kruyt MC; de Bruijn JD; van Blitterswijk CA; Oner FC; Verbout AJ; Dhert WJ
    Biomaterials; 2006 Jan; 27(3):302-14. PubMed ID: 16111745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of bone response to various anorganic bovine bone xenografts: an experimental calvaria defect study.
    Tovar N; Jimbo R; Gangolli R; Perez L; Manne L; Yoo D; Lorenzoni F; Witek L; Coelho PG
    Int J Oral Maxillofac Surg; 2014 Feb; 43(2):251-60. PubMed ID: 23948358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone bonding mechanism of beta-tricalcium phosphate.
    Kotani S; Fujita Y; Kitsugi T; Nakamura T; Yamamuro T; Ohtsuki C; Kokubo T
    J Biomed Mater Res; 1991 Oct; 25(10):1303-15. PubMed ID: 1812121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone regeneration of porous beta-tricalcium phosphate (Conduit TCP) and of biphasic calcium phosphate ceramic (Biosel) in trabecular defects in sheep.
    Bodde EW; Wolke JG; Kowalski RS; Jansen JA
    J Biomed Mater Res A; 2007 Sep; 82(3):711-22. PubMed ID: 17326225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osseointegration of hydroxyapatite and remodeling-resorption of tricalciumphosphate ceramics.
    Draenert M; Draenert A; Draenert K
    Microsc Res Tech; 2013 Apr; 76(4):370-80. PubMed ID: 23390042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage.
    Solchaga LA; Dennis JE; Goldberg VM; Caplan AI
    J Orthop Res; 1999 Mar; 17(2):205-13. PubMed ID: 10221837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of bioactive glass to demineralized freeze-dried bone allograft in the treatment of intrabony defects around implants in the canine mandible.
    Hall EE; Meffert RM; Hermann JS; Mellonig JT; Cochran DL
    J Periodontol; 1999 May; 70(5):526-35. PubMed ID: 10368057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidized titanium screws coated with calcium ions and their performance in rabbit bone.
    Sul YT; Johansson CB; Albrektsson T
    Int J Oral Maxillofac Implants; 2002; 17(5):625-34. PubMed ID: 12381062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of porosity and crystallinity of glass ceramics on the in vivo bioactive response.
    Xin R; Zhang Q; Chen J; Leng Y
    Biomed Mater; 2008 Dec; 3(4):041001. PubMed ID: 18824781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.