BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25175241)

  • 1. Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy.
    Capek J; Vojtěch D
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():494-501. PubMed ID: 25175241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy.
    Čapek J; Vojtěch D
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():21-8. PubMed ID: 24411347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of porous magnesium prepared by powder metallurgy.
    Čapek J; Vojtěch D
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):564-9. PubMed ID: 25428111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, microstructure and mechanical properties of porous Mg--Zn scaffolds.
    Seyedraoufi ZS; Mirdamadi Sh
    J Mech Behav Biomed Mater; 2013 May; 21():1-8. PubMed ID: 23454363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti-Sn-Nb alloy produced by powder metallurgy.
    Nouri A; Hodgson PD; Wen CE
    Acta Biomater; 2010 Apr; 6(4):1630-9. PubMed ID: 19815096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of in vitro and in vivo biocompatibility of iron produced by powder metallurgy.
    Paim TC; Wermuth DP; Bertaco I; Zanatelli C; Naasani LIS; Slaviero M; Driemeier D; Schaeffer L; Wink MR
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111129. PubMed ID: 32600726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additively manufactured biodegradable porous iron.
    Li Y; Jahr H; Lietaert K; Pavanram P; Yilmaz A; Fockaert LI; Leeflang MA; Pouran B; Gonzalez-Garcia Y; Weinans H; Mol JMC; Zhou J; Zadpoor AA
    Acta Biomater; 2018 Sep; 77():380-393. PubMed ID: 29981948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of microstructural characteristics, mechanical properties, and
    Debbarma D; Anand N; Pal K
    Biomed Mater; 2024 Mar; 19(2):. PubMed ID: 38387058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous poly(para-phenylene) scaffolds for load-bearing orthopedic applications.
    DiRienzo AL; Yakacki CM; Frensemeier M; Schneider AS; Safranski DL; Hoyt AJ; Frick CP
    J Mech Behav Biomed Mater; 2014 Feb; 30():347-57. PubMed ID: 24374261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing.
    Chou DT; Wells D; Hong D; Lee B; Kuhn H; Kumta PN
    Acta Biomater; 2013 Nov; 9(10):8593-603. PubMed ID: 23624222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering.
    Zhang X; Li XW; Li JG; Sun XD
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():362-7. PubMed ID: 25063129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafine-grained porous titanium and porous titanium/magnesium composites fabricated by space holder-enabled severe plastic deformation.
    Qi Y; Contreras KG; Jung HD; Kim HE; Lapovok R; Estrin Y
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():754-765. PubMed ID: 26652430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bioactive metallurgical grade porous silicon-polytetrafluoroethylene sheet for guided bone regeneration applications.
    Chadwick EG; Clarkin OM; Raghavendra R; Tanner DA
    Biomed Mater Eng; 2014; 24(3):1563-74. PubMed ID: 24840195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manufacturing of graded titanium scaffolds using a novel space holder technique.
    Chen Y; Kent D; Bermingham M; Dehghan-Manshadi A; Wang G; Wen C; Dargusch M
    Bioact Mater; 2017 Dec; 2(4):248-252. PubMed ID: 29744433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the Processing Parameters on the Porosity and Mechanical Behavior of Titanium Samples with Bimodal Microstructure Produced via Hot Pressing.
    Chávez-Vásconez R; Lascano S; Sauceda S; Reyes-Valenzuela M; Salvo C; Mangalaraja RV; Gotor FJ; Arévalo C; Torres Y
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue behavior of highly porous titanium produced by powder metallurgy with temporary space holders.
    Özbilen S; Liebert D; Beck T; Bram M
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():446-457. PubMed ID: 26706551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and properties of porous Ti-10Mo alloy by selective laser sintering.
    Xie F; He X; Lu X; Cao S; Qu X
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1085-90. PubMed ID: 23827546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous low modulus Ti40Nb compacts with electrodeposited hydroxyapatite coating for biomedical applications.
    Zhuravleva K; Chivu A; Teresiak A; Scudino S; Calin M; Schultz L; Eckert J; Gebert A
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2280-7. PubMed ID: 23498259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new approach to the fabrication of porous magnesium with well-controlled 3D pore structure for orthopedic applications.
    Jiang G; He G
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():317-20. PubMed ID: 25175219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexural and compressive mechanical behaviors of the porous titanium materials with entangled wire structure at different sintering conditions for load-bearing biomedical applications.
    He G; Liu P; Tan Q; Jiang G
    J Mech Behav Biomed Mater; 2013 Dec; 28():309-19. PubMed ID: 24021173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.