These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 25175252)

  • 1. Sol-gel derived bioactive glasses with low tendency to crystallize: synthesis, post-sintering bioactivity and possible application for the production of porous scaffolds.
    Bellucci D; Sola A; Salvatori R; Anesi A; Chiarini L; Cannillo V
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():573-86. PubMed ID: 25175252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds.
    Chen QZ; Thouas GA
    Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst.
    Faure J; Drevet R; Lemelle A; Ben Jaber N; Tara A; El Btaouri H; Benhayoune H
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():407-12. PubMed ID: 25492213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat treatment of Na2O-CaO-P2O5-SiO2 bioactive glasses: densification processes and postsintering bioactivity.
    Sola A; Bellucci D; Raucci MG; Zeppetelli S; Ambrosio L; Cannillo V
    J Biomed Mater Res A; 2012 Feb; 100(2):305-22. PubMed ID: 22052581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of bioactive glass: from Hench to hybrids.
    Jones JR
    Acta Biomater; 2013 Jan; 9(1):4457-86. PubMed ID: 22922331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O).
    Saravanapavan P; Jones JR; Pryce RS; Hench LL
    J Biomed Mater Res A; 2003 Jul; 66(1):110-9. PubMed ID: 12833437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration.
    Nommeots-Nomm A; Labbaf S; Devlin A; Todd N; Geng H; Solanki AK; Tang HM; Perdika P; Pinna A; Ejeian F; Tsigkou O; Lee PD; Esfahani MHN; Mitchell CA; Jones JR
    Acta Biomater; 2017 Jul; 57():449-461. PubMed ID: 28457960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive glass-based composites for the production of dense sintered bodies and porous scaffolds.
    Bellucci D; Sola A; Cannillo V
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2138-51. PubMed ID: 23498242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA; Rizkalla AS; Mequanint K
    Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of various additives on microstructure, mechanical properties, and in vitro bioactivity of sodium oxide-calcium oxide-silica-phosphorus pentoxide glass-ceramics.
    Li HC; Wang DG; Hu JH; Chen CZ
    J Colloid Interface Sci; 2013 Sep; 405():296-304. PubMed ID: 23777867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new sol-gel process for producing Na(2)O-containing bioactive glass ceramics.
    Chen QZ; Li Y; Jin LY; Quinn JM; Komesaroff PA
    Acta Biomater; 2010 Oct; 6(10):4143-53. PubMed ID: 20447473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimising bioactive glass scaffolds for bone tissue engineering.
    Jones JR; Ehrenfried LM; Hench LL
    Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution.
    Baino F; Ferraris M; Bretcanu O; Verné E; Vitale-Brovarone C
    J Biomater Appl; 2013 Mar; 27(7):872-90. PubMed ID: 22207602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique.
    Wu ZY; Hill RG; Yue S; Nightingale D; Lee PD; Jones JR
    Acta Biomater; 2011 Apr; 7(4):1807-16. PubMed ID: 21130188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reprint of: Review of bioactive glass: From Hench to hybrids.
    Jones JR
    Acta Biomater; 2015 Sep; 23 Suppl():S53-82. PubMed ID: 26235346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering.
    Chen QZ; Thompson ID; Boccaccini AR
    Biomaterials; 2006 Apr; 27(11):2414-25. PubMed ID: 16336997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F
    J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses.
    Sepulveda P; Jones JR; Hench LL
    J Biomed Mater Res; 2002 Aug; 61(2):301-11. PubMed ID: 12007211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses.
    Sepulveda P; Jones JR; Hench LL
    J Biomed Mater Res; 2001; 58(6):734-40. PubMed ID: 11745528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication, structure and biological properties of organic acid-derived sol-gel bioactive glasses.
    Lei B; Chen X; Wang Y; Zhao N; Du C; Fang L
    Biomed Mater; 2010 Oct; 5(5):054103. PubMed ID: 20876955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.