These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 25175255)

  • 1. Influences of the sample shape and compression temperature on the deformation behavior and mechanical properties of human dentin.
    Zaytsev D; Panfilov P
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():607-13. PubMed ID: 25175255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformation behavior of human dentin in liquid nitrogen: a diametral compression test.
    Zaytsev D; Panfilov P
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():48-51. PubMed ID: 25063091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the deformation behavior of human dentin under compression and bending.
    Zaytsev D; Ivashov AS; Mandra JV; Panfilov P
    Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():83-90. PubMed ID: 24907741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation behavior of human enamel and dentin-enamel junction under compression.
    Zaytsev D; Panfilov P
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():15-21. PubMed ID: 24268228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On some features of the shape effect in human dentin under compression.
    Zaytsev D; Panfilov P
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():205-9. PubMed ID: 25491821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction of some mechanical characteristics of human dentin under compression considering the shape effect.
    Zaytsev D
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():101-105. PubMed ID: 25686932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of stress and temperature on the micromechanics of creep in highly irradiated bone and dentin.
    Singhal A; Deymier-Black AC; Almer JD; Dunand DC
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1467-75. PubMed ID: 23827597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inelastic deformation and microcracking process in human dentin.
    Eltit F; Ebacher V; Wang R
    J Struct Biol; 2013 Aug; 183(2):141-8. PubMed ID: 23583703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties of human enamel under compression: On the feature of calculations.
    Zaytsev D
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():518-23. PubMed ID: 26952454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformation Behavior of Human Dentin under Uniaxial Compression.
    Zaytsev D; Grigoriev S; Panfilov P
    Int J Biomater; 2012; 2012():854539. PubMed ID: 22315610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Difference of Structural State and Deformation Behavior between Teenage and Mature Human Dentin.
    Panfilov P; Zaytsev D; Antonova OV; Alpatova V; Kiselnikova LP
    Int J Biomater; 2016; 2016():6073051. PubMed ID: 26989416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anelastic phenomena associated to water loss and collagen degradation in human dentin.
    Amadori S; Bonetti E; Campari EG; Cappelloni I; Montanari R
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1455-9. PubMed ID: 23827595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of sources of uncertainties in microtensile bond strength of dental adhesive system for different specimen geometries.
    Ghassemieh E
    Dent Mater; 2008 Apr; 24(4):536-47. PubMed ID: 17697706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time dependent deformation behavior of dentin.
    Montoya C; Arola D; Ossa EA
    Arch Oral Biol; 2017 Apr; 76():20-29. PubMed ID: 28086152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of moisture content and endodontic treatment on some mechanical properties of human dentin.
    Huang TJ; Schilder H; Nathanson D
    J Endod; 1992 May; 18(5):209-15. PubMed ID: 1402574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress-strain analysis for evaluating the effect of the orientation of dentin tubules on their mechanical properties and deformation behavior.
    Han CF; Wu BH; Chung CJ; Chuang SF; Li WL; Lin JF
    J Mech Behav Biomed Mater; 2012 Aug; 12():1-8. PubMed ID: 22659363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of proteoglycans in the nanoindentation creep behavior of human dentin.
    Bertassoni LE; Kury M; Rathsam C; Little CB; Swain MV
    J Mech Behav Biomed Mater; 2015 Mar; 55():264-270. PubMed ID: 26600409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of fracture toughness of human dentin using elastic-plastic fracture mechanics.
    Yan J; Taskonak B; Platt JA; Mecholsky JJ
    J Biomech; 2008; 41(6):1253-9. PubMed ID: 18328490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity and an inverse brittle-to-ductile transition in strontium titanate.
    Gumbsch P; Taeri-Baghbadrani S; Brunner D; Sigle W; Rühle M
    Phys Rev Lett; 2001 Aug; 87(8):085505. PubMed ID: 11497958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone.
    Skedros JG; Dayton MR; Sybrowsky CL; Bloebaum RD; Bachus KN
    J Exp Biol; 2006 Aug; 209(Pt 15):3025-42. PubMed ID: 16857886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.