These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25175338)

  • 1. Microfabrication and microfluidics for muscle tissue models.
    Uzel SG; Pavesi A; Kamm RD
    Prog Biophys Mol Biol; 2014 Aug; 115(2-3):279-93. PubMed ID: 25175338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation.
    Jana S; Leung M; Chang J; Zhang M
    Biofabrication; 2014 Sep; 6(3):035012. PubMed ID: 24876344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bicompartmental device for dynamic cell coculture: design, realisation and preliminary results.
    Ciofani G; Migliore A; Raffa V; Menciassi A; Dario P
    J Biosci Bioeng; 2008 May; 105(5):536-44. PubMed ID: 18558346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils.
    Wright D; Rajalingam B; Selvarasah S; Dokmeci MR; Khademhosseini A
    Lab Chip; 2007 Oct; 7(10):1272-9. PubMed ID: 17896010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A contactless electrical stimulator: application to fabricate functional skeletal muscle tissue.
    Ahadian S; Ramón-Azcón J; Ostrovidov S; Camci-Unal G; Kaji H; Ino K; Shiku H; Khademhosseini A; Matsue T
    Biomed Microdevices; 2013 Feb; 15(1):109-15. PubMed ID: 22965808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications.
    Daniele MA; Boyd DA; Adams AA; Ligler FS
    Adv Healthc Mater; 2015 Jan; 4(1):11-28. PubMed ID: 24853649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfabrication of three-dimensional engineered scaffolds.
    Borenstein JT; Weinberg EJ; Orrick BK; Sundback C; Kaazempur-Mofrad MR; Vacanti JP
    Tissue Eng; 2007 Aug; 13(8):1837-44. PubMed ID: 17590149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of cell culture and microfabrication technology.
    Park TH; Shuler ML
    Biotechnol Prog; 2003; 19(2):243-53. PubMed ID: 12675556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergy between myogenic and non-myogenic cells in a 3D tissue-engineered craniofacial skeletal muscle construct.
    Brady MA; Lewis MP; Mudera V
    J Tissue Eng Regen Med; 2008 Oct; 2(7):408-17. PubMed ID: 18720445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic techniques for development of 3D vascularized tissue.
    Hasan A; Paul A; Vrana NE; Zhao X; Memic A; Hwang YS; Dokmeci MR; Khademhosseini A
    Biomaterials; 2014 Aug; 35(26):7308-25. PubMed ID: 24906345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic devices for disease modeling in muscle tissue.
    Smoak MM; Pearce HA; Mikos AG
    Biomaterials; 2019 Apr; 198():250-258. PubMed ID: 30193908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. User-friendly 3D bioassays with cell-containing hydrogel modules: narrowing the gap between microfluidic bioassays and clinical end-users' needs.
    Lee DH; Bae CY; Kwon S; Park JK
    Lab Chip; 2015 Jun; 15(11):2379-87. PubMed ID: 25857752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microprinting of liver micro-organ for drug metabolism study.
    Chang RC; Emami K; Jeevarajan A; Wu H; Sun W
    Methods Mol Biol; 2011; 671():219-38. PubMed ID: 20967633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic devices for in vitro studies on liver drug metabolism and toxicity.
    van Midwoud PM; Verpoorte E; Groothuis GM
    Integr Biol (Camb); 2011 May; 3(5):509-21. PubMed ID: 21331391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multilayered microfluidic blood vessel-like structure.
    Hasan A; Paul A; Memic A; Khademhosseini A
    Biomed Microdevices; 2015 Oct; 17(5):88. PubMed ID: 26256481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miniaturized immunoassays: moving beyond the microplate.
    Verch T; Bakhtiar R
    Bioanalysis; 2012 Jan; 4(2):177-88. PubMed ID: 22250800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic platforms for lab-on-a-chip applications.
    Haeberle S; Zengerle R
    Lab Chip; 2007 Sep; 7(9):1094-110. PubMed ID: 17713606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities.
    Andersson H; van den Berg A
    Lab Chip; 2004 Apr; 4(2):98-103. PubMed ID: 15052347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.
    Chung BG; Lee KH; Khademhosseini A; Lee SH
    Lab Chip; 2012 Jan; 12(1):45-59. PubMed ID: 22105780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.