BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 25175879)

  • 41. Functional specialization of mouse higher visual cortical areas.
    Andermann ML; Kerlin AM; Roumis DK; Glickfeld LL; Reid RC
    Neuron; 2011 Dec; 72(6):1025-39. PubMed ID: 22196337
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cortico-cortical feedback engages active dendrites in visual cortex.
    Fişek M; Herrmann D; Egea-Weiss A; Cloves M; Bauer L; Lee TY; Russell LE; Häusser M
    Nature; 2023 May; 617(7962):769-776. PubMed ID: 37138089
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Visual orientation and directional selectivity through thalamic synchrony.
    Stanley GB; Jin J; Wang Y; Desbordes G; Wang Q; Black MJ; Alonso JM
    J Neurosci; 2012 Jun; 32(26):9073-88. PubMed ID: 22745507
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Visual representations by cortical somatostatin inhibitory neurons--selective but with weak and delayed responses.
    Ma WP; Liu BH; Li YT; Huang ZJ; Zhang LI; Tao HW
    J Neurosci; 2010 Oct; 30(43):14371-9. PubMed ID: 20980594
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex.
    Tan Z; Sun W; Chen TW; Kim D; Ji N
    Sci Rep; 2015 Jul; 5():12597. PubMed ID: 26219604
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vivo extracellular recordings of thalamic and cortical visual responses reveal V1 connectivity rules.
    Kraynyukova N; Renner S; Born G; Bauer Y; Spacek MA; Tushev G; Busse L; Tchumatchenko T
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2207032119. PubMed ID: 36191204
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Visual processing: microcircuits unmasked.
    Yates D
    Nat Rev Neurosci; 2014 Oct; 15(10):632. PubMed ID: 25234258
    [No Abstract]   [Full Text] [Related]  

  • 48. Coaxial anisotropy of cortical point spread in human visual areas.
    Park SH; Cha K; Lee SH
    J Neurosci; 2013 Jan; 33(3):1143-56a. PubMed ID: 23325251
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Developmental switch in the polarity of experience-dependent synaptic changes in layer 6 of mouse visual cortex.
    Petrus E; Anguh TT; Pho H; Lee A; Gammon N; Lee HK
    J Neurophysiol; 2011 Nov; 106(5):2499-505. PubMed ID: 21813745
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Silencing "Top-Down" Cortical Signals Affects Spike-Responses of Neurons in Cat's "Intermediate" Visual Cortex.
    Huang JY; Wang C; Dreher B
    Front Neural Circuits; 2017; 11():27. PubMed ID: 28487637
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Model-based analysis of pattern motion processing in mouse primary visual cortex.
    Muir DR; Roth MM; Helmchen F; Kampa BM
    Front Neural Circuits; 2015; 9():38. PubMed ID: 26300738
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Feedback inhibition derived from the posterior parietal cortex regulates the neural properties of the mouse visual cortex.
    Hishida R; Horie M; Tsukano H; Tohmi M; Yoshitake K; Meguro R; Takebayashi H; Yanagawa Y; Shibuki K
    Eur J Neurosci; 2019 Sep; 50(6):2970-2987. PubMed ID: 31012509
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Local connections to specific types of layer 6 neurons in the rat visual cortex.
    Zarrinpar A; Callaway EM
    J Neurophysiol; 2006 Mar; 95(3):1751-61. PubMed ID: 16319201
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanisms of direction selectivity in cat primary visual cortex as revealed by visual adaptation.
    Priebe NJ; Lampl I; Ferster D
    J Neurophysiol; 2010 Nov; 104(5):2615-23. PubMed ID: 20739595
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Laminar differences in the orientation selectivity of geniculate afferents in mouse primary visual cortex.
    Kondo S; Ohki K
    Nat Neurosci; 2016 Feb; 19(2):316-9. PubMed ID: 26691830
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neocortical Rebound Depolarization Enhances Visual Perception.
    Funayama K; Minamisawa G; Matsumoto N; Ban H; Chan AW; Matsuki N; Murphy TH; Ikegaya Y
    PLoS Biol; 2015 Aug; 13(8):e1002231. PubMed ID: 26274866
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diversity in spatial frequency, temporal frequency, and speed tuning across mouse visual cortical areas and layers.
    Wang H; Dey O; Lagos WN; Callaway EM
    J Comp Neurol; 2022 Dec; 530(18):3226-3247. PubMed ID: 36070574
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity.
    Eguchi A; Neymotin SA; Stringer SM
    Front Neural Circuits; 2014; 8():16. PubMed ID: 24659956
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spatial clustering of tuning in mouse primary visual cortex.
    Ringach DL; Mineault PJ; Tring E; Olivas ND; Garcia-Junco-Clemente P; Trachtenberg JT
    Nat Commun; 2016 Aug; 7():12270. PubMed ID: 27481398
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Receptive-field properties of V1 and V2 neurons in mice and macaque monkeys.
    Van den Bergh G; Zhang B; Arckens L; Chino YM
    J Comp Neurol; 2010 Jun; 518(11):2051-70. PubMed ID: 20394058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.