BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 25176294)

  • 21. Gold nano-decorated aligned polyurethane nanofibers for enhancement of neurite outgrowth and elongation.
    Demir US; Shahbazi R; Calamak S; Ozturk S; Gultekinoglu M; Ulubayram K
    J Biomed Mater Res A; 2018 Jun; 106(6):1604-1613. PubMed ID: 29427534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Injectable chitosan/κ-carrageenan hydrogel designed with au nanoparticles: A conductive scaffold for tissue engineering demands.
    Pourjavadi A; Doroudian M; Ahadpour A; Azari S
    Int J Biol Macromol; 2019 Apr; 126():310-317. PubMed ID: 30502431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility.
    Eitan Y; Sarig U; Dahan N; Machluf M
    Tissue Eng Part C Methods; 2010 Aug; 16(4):671-83. PubMed ID: 19780649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of scaffolds composed of acellular cardiac extracellular matrix for myocardial tissue engineering.
    Esmaeili Pourfarhangi K; Mashayekhan S; Asl SG; Hajebrahimi Z
    Biologicals; 2018 May; 53():10-18. PubMed ID: 29625872
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineered heart slices for electrophysiological and contractile studies.
    Blazeski A; Kostecki GM; Tung L
    Biomaterials; 2015 Jul; 55():119-28. PubMed ID: 25934457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Incorporation of nanoparticles into transplantable decellularized matrices: Applications and challenges.
    Saleh TM; Ahmed EA; Yu L; Kwak HH; Hussein KH; Park KM; Kang BJ; Choi KY; Kang KS; Woo HM
    Int J Artif Organs; 2018 Aug; 41(8):421-430. PubMed ID: 29807488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glycolic acid-g-chitosan-gold nanoflower nanocomposite scaffolds for drug delivery and tissue engineering.
    Kumari S; Singh RP
    Int J Biol Macromol; 2012 Apr; 50(3):878-83. PubMed ID: 22044748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoengineering gold particle composite fibers for cardiac tissue engineering.
    Shevach M; Maoz BM; Feiner R; Shapira A; Dvir T
    J Mater Chem B; 2013 Oct; 1(39):5210-5217. PubMed ID: 32263327
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering.
    Shachar M; Tsur-Gang O; Dvir T; Leor J; Cohen S
    Acta Biomater; 2011 Jan; 7(1):152-62. PubMed ID: 20688198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling.
    Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N
    Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gold nanoparticle-filled biodegradable photopolymer scaffolds induced muscle remodeling: in vitro and in vivo findings.
    Zsedenyi A; Farkas B; Abdelrasoul GN; Romano I; Gyukity-Sebestyen E; Nagy K; Harmati M; Dobra G; Kormondi S; Decsi G; Nemeth IB; Diaspro A; Brandi F; Beke S; Buzas K
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():625-630. PubMed ID: 28024631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimizing the biofabrication process of omentum-based scaffolds for engineering autologous tissues.
    Soffer-Tsur N; Shevach M; Shapira A; Peer D; Dvir T
    Biofabrication; 2014 Sep; 6(3):035023. PubMed ID: 25162210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of silver nanoparticle-modified decellularized rat esophagus for esophageal tissue engineering: Structural properties and biocompatibility.
    Saleh T; Ahmed E; Yu L; Kwak HH; Kang BJ; Park KM; Choi KY; Kim BM; Kang KS; Woo HM
    J Biosci Bioeng; 2019 Nov; 128(5):613-621. PubMed ID: 31128971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional engineered human cardiac patches prepared from nature's platform improve heart function after acute myocardial infarction.
    Wang Q; Yang H; Bai A; Jiang W; Li X; Wang X; Mao Y; Lu C; Qian R; Guo F; Ding T; Chen H; Chen S; Zhang J; Liu C; Sun N
    Biomaterials; 2016 Oct; 105():52-65. PubMed ID: 27509303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression.
    You JO; Rafat M; Ye GJ; Auguste DT
    Nano Lett; 2011 Sep; 11(9):3643-8. PubMed ID: 21800912
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells.
    Wang B; Borazjani A; Tahai M; Curry AL; Simionescu DT; Guan J; To F; Elder SH; Liao J
    J Biomed Mater Res A; 2010 Sep; 94(4):1100-10. PubMed ID: 20694977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organ reconstruction: Dream or reality for the future.
    Stoltz JF; Zhang L; Ye JS; De Isla N
    Biomed Mater Eng; 2017; 28(s1):S121-S127. PubMed ID: 28372287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flexible Conductive Decellularized Fish Skin Matrix as a Functional Scaffold for Myocardial Infarction Repair.
    Fang Z; Lv B; Zhan J; Xing X; Ding C; Liu J; Wang L; Zou X; Qiu X
    Macromol Biosci; 2023 Dec; 23(12):e2300207. PubMed ID: 37534715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silver Nanoparticles Improve the Biocompatibility and Reduce the Immunogenicity of Xenogeneic Scaffolds Derived from Decellularized Pancreas.
    Qiu H; Zhang L; Wang D; Miao H
    Cell Reprogram; 2022 Feb; 24(1):38-47. PubMed ID: 35119303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Albumin fiber scaffolds for engineering functional cardiac tissues.
    Fleischer S; Shapira A; Regev O; Nseir N; Zussman E; Dvir T
    Biotechnol Bioeng; 2014 Jun; 111(6):1246-57. PubMed ID: 24420414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.