These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25176301)

  • 1. Glycolysis recycling of rigid waste polyurethane foam from refrigerators.
    Zhu P; Cao ZB; Chen Y; Zhang XJ; Qian GR; Chu YL; Zhou M
    Environ Technol; 2014; 35(21-24):2676-84. PubMed ID: 25176301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the economic recycling potential of a glycolysis treatment of rigid polyurethane foam waste: A case study from Thailand.
    Kanchanapiya P; Intaranon N; Tantisattayakul T
    J Environ Manage; 2021 Feb; 280():111638. PubMed ID: 33293164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the Influencing Factors of the Efficient Degradation of Waste Polyurethane and Its Scheme Optimization.
    Gu X; Zhu S; Liu S; Liu Y
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on Efficient Degradation of Waste PU Foam.
    Gu X; Wang X; Guo X; Liu S; Lou C; Liu Y
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of New Eco-Polyols Based on PLA Waste on the Basic Properties of Rigid Polyurethane and Polyurethane/Polyisocyanurate Foams.
    Borowicz M; Isbrandt M; Paciorek-Sadowska J
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Factors Influencing the Efficiency of Catalysts Used in Waste PU Degradation.
    Gu X; Wang X; Wang T; Zhu Y; Guo X; Liu S; Zhu S; Liu Y
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability.
    Simón D; Borreguero AM; de Lucas A; Rodríguez JF
    Waste Manag; 2018 Jun; 76():147-171. PubMed ID: 29625876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical Recycling of Polyurethane Waste via a Microwave-Assisted Glycolysis Process.
    Donadini R; Boaretti C; Lorenzetti A; Roso M; Penzo D; Dal Lago E; Modesti M
    ACS Omega; 2023 Feb; 8(5):4655-4666. PubMed ID: 36777588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of Flexible Polyurethane Foam Waste for Efficient Reuse in Industrial Formulations.
    Kiss G; Rusu G; Peter F; Tănase I; Bandur G
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32664336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study and Characterization of Regenerated Hard Foam Prepared by Polyol Hydrolysis of Waste Polyurethane.
    Gu X; Wang X; Guo X; Liu S; Li Q; Liu Y
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Value-added conversion of waste cooking oil and post-consumer PET bottles into biodiesel and polyurethane foams.
    Dang Y; Luo X; Wang F; Li Y
    Waste Manag; 2016 Jun; 52():360-6. PubMed ID: 27055365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycolysis of semi-interpenetrated polymer network foam based on poly(vinyl chloride) for recovery and reuse of the individual components.
    Calosi M; Renon M; Belletti G; Mazzanti V; Mollica F; Massi A; Bertoldo M
    Waste Manag; 2022 Nov; 153():229-239. PubMed ID: 36126397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation.
    Paciorek-Sadowska J; Borowicz M; Chmiel E; Lubczak J
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of polyurethane foams using a palm oil-based polyol.
    Tanaka R; Hirose S; Hatakeyama H
    Bioresour Technol; 2008 Jun; 99(9):3810-6. PubMed ID: 17698355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycolysis of Polyurethanes Composites Containing Nanosilica.
    Del Amo J; Borreguero AM; Ramos MJ; Rodríguez JF
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33925763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of hydrogen-rich gas from waste rigid polyurethane foam via catalytic steam gasification.
    Guo X; Song Z; Zhang W
    Waste Manag Res; 2020 Jul; 38(7):802-811. PubMed ID: 32026761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Manganese Catalysts for the Hydrogenative Deconstruction of Commercial and End-of-Life Polyurethane Samples.
    Gausas L; Donslund BS; Kristensen SK; Skrydstrup T
    ChemSusChem; 2022 Jan; 15(1):e202101705. PubMed ID: 34510781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental analysis of waste polyurethane from household appliances and its utilization possibilities.
    Stančin H; Růžičková J; Mikulčić H; Raclavská H; Kucbel M; Wang X; Duić N
    J Environ Manage; 2019 Aug; 243():105-115. PubMed ID: 31082753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental friendly automated line for recovering the cabinet of waste refrigerator.
    Ruan J; Xu Z
    Waste Manag; 2011 Nov; 31(11):2319-26. PubMed ID: 21782408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient dehalogenation of automobile shredder residue in NaOH/ethylene glycol using a ball mill.
    Kameda T; Fukuda Y; Park KS; Grause G; Yoshioka T
    Chemosphere; 2009 Jan; 74(2):287-92. PubMed ID: 18929394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.