These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 2517636)
1. Effect of bicarbonate on the growth of Actinobacillus actinomycetemcomitans in anaerobic fructose-limited chemostat culture. Ohta H; Fukui K; Kato K J Gen Microbiol; 1989 Dec; 135(12):3485-95. PubMed ID: 2517636 [TBL] [Abstract][Full Text] [Related]
2. Energy metabolism of Actinobacillus actinomycetemcomitans during anaerobic and microaerobic growth in low- and high-potassium continuous culture. Ohta H; Inoue T; Fukui K Microbiology (Reading); 2001 Sep; 147(Pt 9):2461-2468. PubMed ID: 11535786 [TBL] [Abstract][Full Text] [Related]
3. The relationships between leukotoxin production, growth rate and the bicarbonate concentration in a toxin-production-variable strain of Actinobacillus actinomycetemcomitans. Ohta H; Miyagi A; Kato K; Fukui K Microbiology (Reading); 1996 Apr; 142 ( Pt 4)():963-970. PubMed ID: 8936323 [TBL] [Abstract][Full Text] [Related]
4. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Van der Werf MJ; Guettler MV; Jain MK; Zeikus JG Arch Microbiol; 1997 Jun; 167(6):332-42. PubMed ID: 9148774 [TBL] [Abstract][Full Text] [Related]
5. Fermentable-sugar-level-dependent regulation of leukotoxin synthesis in a variably toxic strain of Actinobacillus actinomycetemcomitans. Inoue T; Tanimoto I; Tada T; Ohashi T; Fukui K; Ohta H Microbiology (Reading); 2001 Oct; 147(Pt 10):2749-2756. PubMed ID: 11577154 [TBL] [Abstract][Full Text] [Related]
6. Glucose catabolism by Spirochaeta thermophila RI 19.B1. Janssen PH; Morgan HW J Bacteriol; 1992 Apr; 174(8):2449-53. PubMed ID: 1556064 [TBL] [Abstract][Full Text] [Related]
7. The regulatory effect of fermentable sugar levels on the production of leukotoxin by Actinobacillus actinomycetemcomitans. Mizoguchi K; Ohta H; Miyagi A; Kurihara H; Takashiba S; Kato K; Murayama Y; Fukui K FEMS Microbiol Lett; 1997 Jan; 146(1):161-6. PubMed ID: 8997720 [TBL] [Abstract][Full Text] [Related]
8. Influence of metabolic end-products on the growth efficiency of Klebsiella aerogenes in anaerobic chemostat culture. Teixeira de Mattos MJ; Plomp PJ; Neijssel OM; Tempest DW Antonie Van Leeuwenhoek; 1984; 50(5-6):461-72. PubMed ID: 6442120 [TBL] [Abstract][Full Text] [Related]
9. Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. McKinlay JB; Zeikus JG; Vieille C Appl Environ Microbiol; 2005 Nov; 71(11):6651-6. PubMed ID: 16269693 [TBL] [Abstract][Full Text] [Related]
10. Formation of fermentation products and extracellular protease during anaerobic growth of Bacillus licheniformis in chemostat and batch-culture. Bulthuis BA; Rommens C; Koningstein GM; Stouthamer AH; van Verseveld HW Antonie Van Leeuwenhoek; 1991; 60(3-4):355-71. PubMed ID: 1807202 [TBL] [Abstract][Full Text] [Related]
11. Anaerobic 2-ketogluconate metabolism of Klebsiella pneumoniae NCTC 418 grown in chemostat culture: involvement of the pentose phosphate pathway. Simons JA; Snoep JL; Feitz S; Teixeira de Mattos MJ; Neijssel OM J Gen Microbiol; 1992 Mar; 138(3):423-8. PubMed ID: 1593257 [TBL] [Abstract][Full Text] [Related]
12. Use of the mannitol pathway in fructose fermentation of Oenococcus oeni due to limiting redox regeneration capacity of the ethanol pathway. Richter H; Hamann I; Unden G Arch Microbiol; 2003 Apr; 179(4):227-33. PubMed ID: 12677361 [TBL] [Abstract][Full Text] [Related]
13. Metabolism of fructose in Thiocapsa roseopersicina. Conrad R; Schlegel HG Z Allg Mikrobiol; 1978; 18(5):309-20. PubMed ID: 695706 [TBL] [Abstract][Full Text] [Related]
14. Glucose fermentation by Propionibacterium microaerophilum: effect of pH on metabolism and bioenergetic. Koussémon M; Combet-Blanc Y; Ollivier B Curr Microbiol; 2003 Feb; 46(2):141-5. PubMed ID: 12520370 [TBL] [Abstract][Full Text] [Related]
15. Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata. Schultz JE; Weaver PF J Bacteriol; 1982 Jan; 149(1):181-90. PubMed ID: 6798016 [TBL] [Abstract][Full Text] [Related]
16. Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: effect of metals on growth yield, enzymes, and the synthesis of acetate from CO 2 . Andreesen JR; Schaupp A; Neurauter C; Brown A; Ljungdahl LG J Bacteriol; 1973 May; 114(2):743-51. PubMed ID: 4706193 [TBL] [Abstract][Full Text] [Related]
17. Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum. O'Brien WE; Ljungdahl LG J Bacteriol; 1972 Feb; 109(2):626-32. PubMed ID: 5058446 [TBL] [Abstract][Full Text] [Related]
18. Cell Yields of Vibrio succinogenes growing with formate and fumarate as sole carbon and energy sources in chemostat culture. Mell H; Bronder M; Kröger A Arch Microbiol; 1982 May; 131(3):224-8. PubMed ID: 7103661 [TBL] [Abstract][Full Text] [Related]
19. Fructose metabolism of the purple non-sulfur bacterium Rhodospirillum rubrum: effect of carbon dioxide on growth, and production of bacteriochlorophyll and organic acids. Rudolf C; Grammel H Enzyme Microb Technol; 2012 Apr; 50(4-5):238-46. PubMed ID: 22418264 [TBL] [Abstract][Full Text] [Related]
20. [Environmental factors affecting the succinic acid production by Actinobacillus succinogenes CGMCC 1593]. Zheng P; Zhou W; Ni Y; Jiang M; Wei P; Sun Z Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):1051-5. PubMed ID: 18807991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]