These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 25177214)
1. Propulsion Mechanism of Catalytic Microjet Engines. Fomin VM; Hippler M; Magdanz V; Soler L; Sanchez S; Schmidt OG IEEE Trans Robot; 2014 Feb; 30(1):40-48. PubMed ID: 25177214 [TBL] [Abstract][Full Text] [Related]
2. Switching Propulsion Mechanisms of Tubular Catalytic Micromotors. Wrede P; Medina-Sánchez M; Fomin VM; Schmidt OG Small; 2021 Mar; 17(12):e2006449. PubMed ID: 33615690 [TBL] [Abstract][Full Text] [Related]
3. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Solovev AA; Mei Y; Bermúdez Ureña E; Huang G; Schmidt OG Small; 2009 Jul; 5(14):1688-92. PubMed ID: 19373828 [TBL] [Abstract][Full Text] [Related]
4. Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment. Li L; Wang J; Li T; Song W; Zhang G Soft Matter; 2014 Oct; 10(38):7511-8. PubMed ID: 25080889 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of catalytic tubular microjet engines: dependence on geometry and chemical environment. Li J; Huang G; Ye M; Li M; Liu R; Mei Y Nanoscale; 2011 Dec; 3(12):5083-9. PubMed ID: 22057905 [TBL] [Abstract][Full Text] [Related]
6. Poisoning of bubble propelled catalytic micromotors: the chemical environment matters. Zhao G; Sanchez S; Schmidt OG; Pumera M Nanoscale; 2013 Apr; 5(7):2909-14. PubMed ID: 23450281 [TBL] [Abstract][Full Text] [Related]
7. Influence of Asymmetry and Driving Forces on the Propulsion of Bubble-Propelled Catalytic Micromotors. Hayakawa M; Onoe H; Nagai KH; Takinoue M Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404402 [TBL] [Abstract][Full Text] [Related]
8. Reynolds numbers influence the directionality of self-propelled microjet engines in the 10(-4) regime. Zhao G; Nguyen NT; Pumera M Nanoscale; 2013 Aug; 5(16):7277-83. PubMed ID: 23817355 [TBL] [Abstract][Full Text] [Related]
9. Template-assisted fabrication of salt-independent catalytic tubular microengines. Manesh KM; Cardona M; Yuan R; Clark M; Kagan D; Balasubramanian S; Wang J ACS Nano; 2010 Apr; 4(4):1799-804. PubMed ID: 20230041 [TBL] [Abstract][Full Text] [Related]
10. Rocket-inspired tubular catalytic microjets with grating-structured walls as guiding empennages. Huang G; Wang J; Liu Z; Zhou D; Tian Z; Xu B; Li L; Mei Y Nanoscale; 2017 Dec; 9(47):18590-18596. PubMed ID: 29165488 [TBL] [Abstract][Full Text] [Related]
11. Bubble-Free Propulsion of Ultrasmall Tubular Nanojets Powered by Biocatalytic Reactions. Ma X; Hortelao AC; Miguel-López A; Sánchez S J Am Chem Soc; 2016 Oct; 138(42):13782-13785. PubMed ID: 27718566 [TBL] [Abstract][Full Text] [Related]
12. Superfast motion of catalytic microjet engines at physiological temperature. Sanchez S; Ananth AN; Fomin VM; Viehrig M; Schmidt OG J Am Chem Soc; 2011 Sep; 133(38):14860-3. PubMed ID: 21848337 [TBL] [Abstract][Full Text] [Related]
13. Stimuli-responsive microjets with reconfigurable shape. Magdanz V; Stoychev G; Ionov L; Sanchez S; Schmidt OG Angew Chem Int Ed Engl; 2014 Mar; 53(10):2673-7. PubMed ID: 24481856 [TBL] [Abstract][Full Text] [Related]
14. Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Mei Y; Solovev AA; Sanchez S; Schmidt OG Chem Soc Rev; 2011 May; 40(5):2109-19. PubMed ID: 21340080 [TBL] [Abstract][Full Text] [Related]
15. Magnetic Fields Enhanced the Performance of Tubular Dichalcogenide Micromotors at Low Hydrogen Peroxide Levels. de la Asunción-Nadal V; Jurado-Sánchez B; Vázquez L; Escarpa A Chemistry; 2019 Oct; 25(57):13157-13163. PubMed ID: 31390485 [TBL] [Abstract][Full Text] [Related]
16. Blood proteins strongly reduce the mobility of artificial self-propelled micromotors. Wang H; Zhao G; Pumera M Chemistry; 2013 Dec; 19(49):16756-9. PubMed ID: 24166769 [TBL] [Abstract][Full Text] [Related]
17. Challenges of the movement of catalytic micromotors in blood. Zhao G; Viehrig M; Pumera M Lab Chip; 2013 May; 13(10):1930-6. PubMed ID: 23580034 [TBL] [Abstract][Full Text] [Related]
18. Driving Forces of the Bubble-Driven Tubular Micromotor Based on the Full Life-Cycle of the Bubble. Lin Y; Geng X; Chi Q; Wang C; Wang Z Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31234370 [TBL] [Abstract][Full Text] [Related]
19. Multigear Bubble Propulsion of Transient Micromotors. Nourhani A; Karshalev E; Soto F; Wang J Research (Wash D C); 2020; 2020():7823615. PubMed ID: 32266331 [TBL] [Abstract][Full Text] [Related]
20. Efficient Propulsion and Hovering of Bubble-Driven Hollow Micromotors underneath an Air-Liquid Interface. Wang LL; Chen L; Zhang J; Duan JM; Wang L; Silber-Li ZH; Zheng X; Cui HH Langmuir; 2018 Sep; 34(35):10426-10433. PubMed ID: 30091934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]