These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 25177290)
1. Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation. Luque NR; Garrido JA; Carrillo RR; D'Angelo E; Ros E Front Comput Neurosci; 2014; 8():97. PubMed ID: 25177290 [TBL] [Abstract][Full Text] [Related]
2. Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation. Garrido JA; Luque NR; D'Angelo E; Ros E Front Neural Circuits; 2013; 7():159. PubMed ID: 24130518 [TBL] [Abstract][Full Text] [Related]
3. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity. Antonietti A; Casellato C; D'Angelo E; Pedrocchi A IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2748-2762. PubMed ID: 27608482 [TBL] [Abstract][Full Text] [Related]
4. Distributed Circuit Plasticity: New Clues for the Cerebellar Mechanisms of Learning. D'Angelo E; Mapelli L; Casellato C; Garrido JA; Luque N; Monaco J; Prestori F; Pedrocchi A; Ros E Cerebellum; 2016 Apr; 15(2):139-51. PubMed ID: 26304953 [TBL] [Abstract][Full Text] [Related]
5. Physiology of the cerebellum. D'Angelo E Handb Clin Neurol; 2018; 154():85-108. PubMed ID: 29903454 [TBL] [Abstract][Full Text] [Related]
6. Distributed Cerebellar Motor Learning: A Spike-Timing-Dependent Plasticity Model. Luque NR; Garrido JA; Naveros F; Carrillo RR; D'Angelo E; Ros E Front Comput Neurosci; 2016; 10():17. PubMed ID: 26973504 [TBL] [Abstract][Full Text] [Related]
7. Perineuronal Nets in the Deep Cerebellar Nuclei Regulate GABAergic Transmission and Delay Eyeblink Conditioning. Hirono M; Watanabe S; Karube F; Fujiyama F; Kawahara S; Nagao S; Yanagawa Y; Misonou H J Neurosci; 2018 Jul; 38(27):6130-6144. PubMed ID: 29858484 [TBL] [Abstract][Full Text] [Related]
8. Loss of GPRC5B impairs synapse formation of Purkinje cells with cerebellar nuclear neurons and disrupts cerebellar synaptic plasticity and motor learning. Sano T; Kohyama-Koganeya A; Kinoshita MO; Tatsukawa T; Shimizu C; Oshima E; Yamada K; Le TD; Akagi T; Tohyama K; Nagao S; Hirabayashi Y Neurosci Res; 2018 Nov; 136():33-47. PubMed ID: 29481883 [TBL] [Abstract][Full Text] [Related]
9. Dynamical working memory and timed responses: the role of reverberating loops in the olivo-cerebellar system. Kistler WM; De Zeeuw CI Neural Comput; 2002 Nov; 14(11):2597-626. PubMed ID: 12433292 [TBL] [Abstract][Full Text] [Related]
10. Long-Lasting Response Changes in Deep Cerebellar Nuclei Moscato L; Montagna I; De Propris L; Tritto S; Mapelli L; D'Angelo E Front Cell Neurosci; 2019; 13():84. PubMed ID: 30894802 [TBL] [Abstract][Full Text] [Related]
11. Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation. Inagaki K; Hirata Y Cerebellum; 2017 Aug; 16(4):827-839. PubMed ID: 28444617 [TBL] [Abstract][Full Text] [Related]
13. The organization of plasticity in the cerebellar cortex: from synapses to control. D'Angelo E Prog Brain Res; 2014; 210():31-58. PubMed ID: 24916288 [TBL] [Abstract][Full Text] [Related]
14. Implications of functional anatomy on information processing in the deep cerebellar nuclei. Baumel Y; Jacobson GA; Cohen D Front Cell Neurosci; 2009; 3():14. PubMed ID: 19949453 [TBL] [Abstract][Full Text] [Related]
15. Dynamic Redistribution of Plasticity in a Cerebellar Spiking Neural Network Reproducing an Associative Learning Task Perturbed by TMS. Antonietti A; Monaco J; D'Angelo E; Pedrocchi A; Casellato C Int J Neural Syst; 2018 Nov; 28(9):1850020. PubMed ID: 29914314 [TBL] [Abstract][Full Text] [Related]
16. Real-time field-programmable gate array-based closed-loop deep brain stimulation platform targeting cerebellar circuitry rescues motor deficits in a mouse model of cerebellar ataxia. Kumar G; Zhou Z; Wang Z; Kwan KM; Tin C; Ma CHE CNS Neurosci Ther; 2024 Mar; 30(3):e14638. PubMed ID: 38488445 [TBL] [Abstract][Full Text] [Related]
17. GABA-ergic transmission in deep cerebellar nuclei. Sastry BR; Morishita W; Yip S; Shew T Prog Neurobiol; 1997 Oct; 53(2):259-71. PubMed ID: 9364613 [TBL] [Abstract][Full Text] [Related]
18. Hapln4/Bral2 is a selective regulator for formation and transmission of GABAergic synapses between Purkinje and deep cerebellar nuclei neurons. Edamatsu M; Miyano R; Fujikawa A; Fujii F; Hori T; Sakaba T; Oohashi T J Neurochem; 2018 Dec; 147(6):748-763. PubMed ID: 30125937 [TBL] [Abstract][Full Text] [Related]
19. Responses to tactile stimulation in deep cerebellar nucleus neurons result from recurrent activation in multiple pathways. Rowland NC; Jaeger D J Neurophysiol; 2008 Feb; 99(2):704-17. PubMed ID: 18077662 [TBL] [Abstract][Full Text] [Related]
20. Diffusion of nitric oxide can facilitate cerebellar learning: A simulation study. Schweighofer N; Ferriol G Proc Natl Acad Sci U S A; 2000 Sep; 97(19):10661-5. PubMed ID: 10984547 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]