These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 25178528)
1. Evaluating the potential of three Fe- and Mn-(nano)oxides for the stabilization of Cd, Cu and Pb in contaminated soils. Michálková Z; Komárek M; Šillerová H; Della Puppa L; Joussein E; Bordas F; Vaněk A; Vaněk O; Ettler V J Environ Manage; 2014 Dec; 146():226-234. PubMed ID: 25178528 [TBL] [Abstract][Full Text] [Related]
2. Selected Fe and Mn (nano)oxides as perspective amendments for the stabilization of As in contaminated soils. Michálková Z; Komárek M; Veselská V; Číhalová S Environ Sci Pollut Res Int; 2016 Jun; 23(11):10841-10854. PubMed ID: 26895725 [TBL] [Abstract][Full Text] [Related]
3. Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time. Vítková M; Rákosová S; Michálková Z; Komárek M J Environ Manage; 2017 Jan; 186(Pt 2):268-276. PubMed ID: 27292579 [TBL] [Abstract][Full Text] [Related]
4. Interactions of two novel stabilizing amendments with sunflower plants grown in a contaminated soil. Michálková Z; Martínez-Fernández D; Komárek M Chemosphere; 2017 Nov; 186():374-380. PubMed ID: 28802129 [TBL] [Abstract][Full Text] [Related]
5. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals. Feng XH; Zhai LM; Tan WF; Liu F; He JZ Environ Pollut; 2007 May; 147(2):366-73. PubMed ID: 16996175 [TBL] [Abstract][Full Text] [Related]
6. The pH-dependent long-term stability of an amorphous manganese oxide in smelter-polluted soils: implication for chemical stabilization of metals and metalloids. Ettler V; Tomášová Z; Komárek M; Mihaljevič M; Šebek O; Michálková Z J Hazard Mater; 2015 Apr; 286():386-94. PubMed ID: 25600581 [TBL] [Abstract][Full Text] [Related]
7. Fractionation of Heavy Metals in Multi-Contaminated Soil Treated with Biochar Using the Sequential Extraction Procedure. Awad M; Liu Z; Skalicky M; Dessoky ES; Brestic M; Mbarki S; Rastogi A; El Sabagh A Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33802758 [TBL] [Abstract][Full Text] [Related]
8. Interactions of nano-oxides with low-molecular-weight organic acids in a contaminated soil. Vítková M; Komárek M; Tejnecký V; Šillerová H J Hazard Mater; 2015 Aug; 293():7-14. PubMed ID: 25814334 [TBL] [Abstract][Full Text] [Related]
9. Availability and vertical distribution of Cu, Cd, Ca, and P in soil as influenced by lime and apatite with different dosages: a 7-year field study. Cui H; Zhang W; Zhou J; Xu L; Zhang X; Zhang S; Zhou J Environ Sci Pollut Res Int; 2018 Dec; 25(35):35143-35153. PubMed ID: 30328042 [TBL] [Abstract][Full Text] [Related]
10. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699 [TBL] [Abstract][Full Text] [Related]
11. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils. Huang G; Su X; Rizwan MS; Zhu Y; Hu H Environ Sci Pollut Res Int; 2016 Aug; 23(16):16845-56. PubMed ID: 27197655 [TBL] [Abstract][Full Text] [Related]
12. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Vítková M; Puschenreiter M; Komárek M Chemosphere; 2018 Jun; 200():217-226. PubMed ID: 29486361 [TBL] [Abstract][Full Text] [Related]
13. Remediation of a historically Pb contaminated soil using a model natural Mn oxide waste. McCann CM; Gray ND; Tourney J; Davenport RJ; Wade M; Finlay N; Hudson-Edwards KA; Johnson KL Chemosphere; 2015 Nov; 138():211-7. PubMed ID: 26073590 [TBL] [Abstract][Full Text] [Related]
14. Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. de Matos AT; Fontes MP; da Costa LM; Martinez MA Environ Pollut; 2001; 111(3):429-35. PubMed ID: 11202747 [TBL] [Abstract][Full Text] [Related]
15. Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil. Wan D; Zhang N; Chen W; Cai P; Zheng L; Huang Q Environ Sci Pollut Res Int; 2018 Nov; 25(32):32130-32139. PubMed ID: 30218340 [TBL] [Abstract][Full Text] [Related]
16. Effect of biochars on adsorption of Cu(II), Pb(II) and Cd(II) by three variable charge soils from southern China. Xu RK; Zhao AZ Environ Sci Pollut Res Int; 2013 Dec; 20(12):8491-501. PubMed ID: 23649601 [TBL] [Abstract][Full Text] [Related]
17. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine. Li J; Xie ZM; Zhu YG; Naidu R J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Mignardi S; Corami A; Ferrini V Chemosphere; 2012 Jan; 86(4):354-60. PubMed ID: 22024096 [TBL] [Abstract][Full Text] [Related]
19. Sorption behavior of Cd, Cu, Pb, and Zn and their interactions in phytoremediated soil. Trakal L; Komárek M; Száková J; Tlustos P; Tejnecký V; Drábek O Int J Phytoremediation; 2012 Sep; 14(8):806-19. PubMed ID: 22908646 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils I. Selectivity sequences. Covelo EF; Vega FA; Andrade ML J Hazard Mater; 2007 Aug; 147(3):852-61. PubMed ID: 17346879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]