BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25178826)

  • 1. Evaluation of ring shear testing as a characterization method for powder flow in small-scale powder processing equipment.
    Søgaard SV; Pedersen T; Allesø M; Garnaes J; Rantanen J
    Int J Pharm; 2014 Nov; 475(1-2):315-23. PubMed ID: 25178826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of Pharmaceutical Powder Flowability using Shear Cell-Based Methods and Application of Jenike's Methodology.
    Jager PD; Bramante T; Luner PE
    J Pharm Sci; 2015 Nov; 104(11):3804-3813. PubMed ID: 26220285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and validation of an annular shear cell for pharmaceutical powder testing.
    Ramachandruni H; Hoag SW
    J Pharm Sci; 2001 May; 90(5):531-40. PubMed ID: 11288098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Powder flow in an automated uniaxial tester and an annular shear cell: a study of pharmaceutical excipients and analytical data comparison.
    Kuentz M; Schirg P
    Drug Dev Ind Pharm; 2013 Sep; 39(9):1476-83. PubMed ID: 23043592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow Function of Pharmaceutical Powders Is Predominantly Governed by Cohesion, Not by Friction Coefficients.
    Leung LY; Mao C; Srivastava I; Du P; Yang CY
    J Pharm Sci; 2017 Jul; 106(7):1865-1873. PubMed ID: 28416416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and Experimental Evaluation of Flow Pattern of Pharmaceutical Powder Blends Discharged From Intermediate Bulk Containers (IBCs).
    Nauka E; Maurer R; Gonzalez AA; Zhang W; Narang AS; Mao C
    J Pharm Sci; 2021 Mar; 110(3):1172-1181. PubMed ID: 33049262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of particle shape on powder flowability of microcrystalline cellulose as determined using the vibration shear tube method.
    Horio T; Yasuda M; Matsusaka S
    Int J Pharm; 2014 Oct; 473(1-2):572-8. PubMed ID: 25079435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of friction between powder and tooling on the die-wall pressure evolution during tableting: Experimental and numerical results for flat and concave punches.
    Mazel V; Diarra H; Tchoreloff P
    Int J Pharm; 2019 Jan; 554():116-124. PubMed ID: 30395955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward better understanding of powder avalanching and shear cell parameters of drug-excipient blends to design minimal weight variability into pharmaceutical capsules.
    Nalluri VR; Puchkov M; Kuentz M
    Int J Pharm; 2013 Feb; 442(1-2):49-56. PubMed ID: 22917747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Shear History on Powder Flow Characterization Using a Ring Shear Tester.
    Swize T; Osei-Yeboah F; Peterson ML; Boulas P
    J Pharm Sci; 2019 Jan; 108(1):750-754. PubMed ID: 30009798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow Function of Pharmaceutical Powders at Low-Stress Conditions Can Be Inferred Using a Simple Flow-Through-Orifice Device.
    Zhou X; Nauka E; Narang A; Mao C
    J Pharm Sci; 2020 Jun; 109(6):2009-2017. PubMed ID: 32113978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a new method to get a reliable powder flow characteristics using only 1 to 2 g of powder.
    Seppälä K; Heinämäki J; Hatara J; Seppälä L; Yliruusi J
    AAPS PharmSciTech; 2010 Mar; 11(1):402-8. PubMed ID: 20238189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of microcrystalline cellulose spheres and prediction of hopper flow based on a μ(I)-rheology model.
    Remmelgas J; Fall A; Sasic S; Ström H; Tajarobi P; Wikström H; Marucci M; Boissier C
    Eur J Pharm Sci; 2020 Jan; 142():105085. PubMed ID: 31669423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow characterization of a pharmaceutical excipient using the shear cell method.
    Salústio PJ; Inácio C; Nunes T; Sousa E Silva JP; Costa PC
    Pharm Dev Technol; 2020 Feb; 25(2):237-244. PubMed ID: 31718375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roller compaction of moist pharmaceutical powders.
    Wu CY; Hung WL; Miguélez-Morán AM; Gururajan B; Seville JP
    Int J Pharm; 2010 May; 391(1-2):90-7. PubMed ID: 20176096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of colloidal silica on rheological properties of common pharmaceutical excipients.
    Majerová D; Kulaviak L; Růžička M; Štěpánek F; Zámostný P
    Eur J Pharm Biopharm; 2016 Sep; 106():2-8. PubMed ID: 27163240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying effects of particulate properties on powder flow properties using a ring shear tester.
    Hou H; Sun CC
    J Pharm Sci; 2008 Sep; 97(9):4030-9. PubMed ID: 18228607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Massing in high shear wet granulation can simultaneously improve powder flow and deteriorate powder compaction: a double-edged sword.
    Shi L; Feng Y; Sun CC
    Eur J Pharm Sci; 2011 May; 43(1-2):50-6. PubMed ID: 21443948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating.
    Huang Z; Scicolone JV; Han X; Davé RN
    Int J Pharm; 2015 Jan; 478(2):447-55. PubMed ID: 25475016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Wall Friction Properties of Pharmaceutical Powders, Blends, and Granulations.
    Hancock BC
    J Pharm Sci; 2019 Jan; 108(1):457-463. PubMed ID: 30359583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.