These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 25178856)
1. Intestinal transport of TRH analogs through PepT1: the role of in silico and in vitro modeling. Bagul P; Khomane KS; Kesharwani SS; Pragyan P; Nandekar PP; Meena CL; Bansal AK; Jain R; Tikoo K; Sangamwar AT J Mol Recognit; 2014 Oct; 27(10):609-17. PubMed ID: 25178856 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic insights into PEPT1-mediated transport of a novel antiepileptic, NP-647. Khomane KS; Nandekar PP; Wahlang B; Bagul P; Shaikh N; Pawar YB; Meena CL; Sangamwar AT; Jain R; Tikoo K; Bansal AK Mol Pharm; 2012 Sep; 9(9):2458-68. PubMed ID: 22779445 [TBL] [Abstract][Full Text] [Related]
3. Studies on the transport of thyrotropin-releasing hormone (TRH) analogues in Caco-2 cell monolayers. Urayama A; Yamada S; Deguchi Y; Ohmori Y; Kimura R J Pharm Pharmacol; 2003 May; 55(5):603-8. PubMed ID: 12831502 [TBL] [Abstract][Full Text] [Related]
4. Propylene glycol-linked amino acid/dipeptide diester prodrugs of oleanolic acid for PepT1-mediated transport: synthesis, intestinal permeability, and pharmacokinetics. Cao F; Gao Y; Wang M; Fang L; Ping Q Mol Pharm; 2013 Apr; 10(4):1378-87. PubMed ID: 23339520 [TBL] [Abstract][Full Text] [Related]
5. Uptake, transport and regulation of JBP485 by PEPT1 in vitro and in vivo. Liu Z; Wang C; Liu Q; Meng Q; Cang J; Mei L; Kaku T; Liu K Peptides; 2011 Apr; 32(4):747-54. PubMed ID: 21262302 [TBL] [Abstract][Full Text] [Related]
6. Peptide derivation of poorly absorbable drug allows intestinal absorption via peptide transporter. Kikuchi A; Tomoyasu T; Tanaka M; Kanamitsu K; Sasabe H; Maeda T; Odomi M; Tamai I J Pharm Sci; 2009 May; 98(5):1775-87. PubMed ID: 18781650 [TBL] [Abstract][Full Text] [Related]
7. Effects of peptide structure on transport properties of seven thyrotropin releasing hormone (TRH) analogues in a human intestinal cell line (Caco-2). Werner U; Kissel T; Stüber W Pharm Res; 1997 Feb; 14(2):246-50. PubMed ID: 9090718 [TBL] [Abstract][Full Text] [Related]
8. Human PEPT1 pharmacophore distinguishes between dipeptide transport and binding. Vig BS; Stouch TR; Timoszyk JK; Quan Y; Wall DA; Smith RL; Faria TN J Med Chem; 2006 Jun; 49(12):3636-44. PubMed ID: 16759105 [TBL] [Abstract][Full Text] [Related]
9. Prediction of glycylsarcosine transport in Caco-2 cell lines expressing PEPT1 at different levels. Irie M; Terada T; Tsuda M; Katsura T; Inui K Pflugers Arch; 2006 Apr; 452(1):64-70. PubMed ID: 16283203 [TBL] [Abstract][Full Text] [Related]
10. Caco-2 cell permeability and stability of two d-glucopyranuronamide conjugates of thyrotropin-releasing hormone. Wessling ST; Ross BP; Koda Y; Blanchfield JT; Toth I Bioorg Med Chem; 2007 Jul; 15(14):4946-50. PubMed ID: 17498958 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of PepT1 transport of food-derived antihypertensive peptides, Ile-Pro-Pro and Leu-Lys-Pro using in vitro, ex vivo and in vivo transport models. Gleeson JP; Brayden DJ; Ryan SM Eur J Pharm Biopharm; 2017 Jun; 115():276-284. PubMed ID: 28315445 [TBL] [Abstract][Full Text] [Related]
12. Uptake of cyclic dipeptide by PEPT1 in Caco-2 cells: phenolic hydroxyl group of substrate enhances affinity for PEPT1. Mizuma T; Narasaka T; Awazu S J Pharm Pharmacol; 2002 Sep; 54(9):1293-6. PubMed ID: 12356285 [TBL] [Abstract][Full Text] [Related]
13. Carrier-mediated γ-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers. Nielsen CU; Carstensen M; Brodin B Eur J Pharm Biopharm; 2012 Jun; 81(2):458-62. PubMed ID: 22452873 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of analogs of L-valacyclovir and determination of their substrate activity for the oligopeptide transporter in Caco-2 cells. Friedrichsen GM; Chen W; Begtrup M; Lee CP; Smith PL; Borchardt RT Eur J Pharm Sci; 2002 Jul; 16(1-2):1-13. PubMed ID: 12113886 [TBL] [Abstract][Full Text] [Related]
15. Effects of JBP485 on the expression and function of PEPT1 in indomethacin-induced intestinal injury in rats and damage in Caco-2 cells. Wang W; Liu Q; Wang C; Meng Q; Kaku T; Liu K Peptides; 2011 May; 32(5):946-55. PubMed ID: 21310202 [TBL] [Abstract][Full Text] [Related]
16. Structure, function, and molecular modeling approaches to the study of the intestinal dipeptide transporter PepT1. Bolger MB; Haworth IS; Yeung AK; Ann D; von Grafenstein H; Hamm-Alvarez S; Okamoto CT; Kim KJ; Basu SK; Wu S; Lee VH J Pharm Sci; 1998 Nov; 87(11):1286-91. PubMed ID: 9811478 [TBL] [Abstract][Full Text] [Related]
17. PEPT1 involved in the uptake and transepithelial transport of cefditoren in vivo and in vitro. Zhang Q; Liu Q; Wu J; Wang C; Peng J; Ma X; Liu K Eur J Pharmacol; 2009 Jun; 612(1-3):9-14. PubMed ID: 19371738 [TBL] [Abstract][Full Text] [Related]
18. Correlation between epithelial cell permeability of cephalexin and expression of intestinal oligopeptide transporter. Chu XY; Sánchez-Castaño GP; Higaki K; Oh DM; Hsu CP; Amidon GL J Pharmacol Exp Ther; 2001 Nov; 299(2):575-82. PubMed ID: 11602669 [TBL] [Abstract][Full Text] [Related]
19. Computational modelling of H+-coupled peptide transport via human PEPT1. Irie M; Terada T; Katsura T; Matsuoka S; Inui K J Physiol; 2005 Jun; 565(Pt 2):429-39. PubMed ID: 15802293 [TBL] [Abstract][Full Text] [Related]
20. Bifunctional peptidomimetic prodrugs of didanosine for improved intestinal permeability and enhanced acidic stability: synthesis, transepithelial transport, chemical stability and pharmacokinetics. Yan Z; Sun J; Chang Y; Liu Y; Fu Q; Xu Y; Sun Y; Pu X; Zhang Y; Jing Y; Yin S; Zhu M; Wang Y; He Z Mol Pharm; 2011 Apr; 8(2):319-29. PubMed ID: 21280612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]