These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 25178951)

  • 1. Integrating hydrogeochemical, hydrogeological, and environmental tracer data to understand groundwater flow for a karstified aquifer system.
    Pavlovskiy I; Selle B
    Ground Water; 2015 Apr; 53 Suppl 1():156-65. PubMed ID: 25178951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Palaeosol control on groundwater flow and pollutant distribution: the example of arsenic.
    McArthur JM; Nath B; Banerjee DM; Purohit R; Grassineau N
    Environ Sci Technol; 2011 Feb; 45(4):1376-83. PubMed ID: 21268629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle Swarm Optimization for inverse modeling of solute transport in fractured gneiss aquifer.
    Abdelaziz R; Zambrano-Bigiarini M
    J Contam Hydrol; 2014 Aug; 164():285-98. PubMed ID: 25035936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogeochemical and isotopic characterisation of groundwater in a sand-dune phreatic aquifer on the northeastern coast of the province of Buenos Aires, Argentina.
    Carretero SC; Dapeña C; Kruse EE
    Isotopes Environ Health Stud; 2013; 49(3):399-419. PubMed ID: 23713885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using hydrochemical data and modelling to enhance the knowledge of groundwater flow and quality in an alluvial aquifer of Zagreb, Croatia.
    Marković T; Brkić Ž; Larva O
    Sci Total Environ; 2013 Aug; 458-460():508-16. PubMed ID: 23707721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of isotope hydrology in groundwater conceptualization for modeling flow and contaminant transport at northwestern Sinai, Egypt.
    Hagagg KH; Sadek MA; Mohamed FA; El-Shahat MF
    Environ Monit Assess; 2018 Nov; 190(12):745. PubMed ID: 30470947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of the aquitard to the regional groundwater hydrochemistry of the underlying confined aquifer in the Pearl River Delta, China.
    Wang Y; Jiao JJ; Cherry JA; Lee CM
    Sci Total Environ; 2013 Sep; 461-462():663-71. PubMed ID: 23770547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limitations of the use of environmental tracers to infer groundwater age.
    McCallum JL; Cook PG; Simmons CT
    Ground Water; 2015 Apr; 53 Suppl 1():56-70. PubMed ID: 25040356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Groundwater geochemistry and microbial community structure in the aquifer transition from volcanic to alluvial areas.
    Amalfitano S; Del Bon A; Zoppini A; Ghergo S; Fazi S; Parrone D; Casella P; Stano F; Preziosi E
    Water Res; 2014 Nov; 65():384-94. PubMed ID: 25165005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting aquifer response time for application in catchment modeling.
    Walker GR; Gilfedder M; Dawes WR; Rassam DW
    Ground Water; 2015; 53(3):475-84. PubMed ID: 24842053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretation of environmental tracer data for conceptual understanding of groundwater flow: an application for fractured aquifer systems in the Kłodzko Basin, Sudetes, Poland.
    Mądrala M; Wąsik M; Małoszewski P
    Isotopes Environ Health Stud; 2017 Oct; 53(5):466-483. PubMed ID: 28565921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical assessments of recharge-dominated groundwater flow and transport in the nearshore reclamation area in western Taiwan.
    Ni CF; Li WC; Hsu SM; Lee IH; Lin CP
    Environ Monit Assess; 2019 Jan; 191(2):83. PubMed ID: 30659403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpretation of environmental tracers in groundwater systems with stagnant water zones.
    Maloszewski P; Stichler W; Zuber A
    Isotopes Environ Health Stud; 2004 Mar; 40(1):21-33. PubMed ID: 15085981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.
    Narula KK; Gosain AK
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating groundwater-lake interactions by hydraulic heads and a water balance.
    Rudnick S; Lewandowski J; Nützmann G
    Ground Water; 2015; 53(2):227-37. PubMed ID: 24854019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating groundwater flow between Edwards and Trinity aquifers in central Texas.
    Wong CI; Kromann JS; Hunt BB; Smith BA; Banner JL
    Ground Water; 2014; 52(4):624-39. PubMed ID: 24033308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. River-aquifer interactions and their relationship to stygofauna assemblages: a case study of the Gwydir River alluvial aquifer (New South Wales, Australia).
    Menció A; Korbel KL; Hose GC
    Sci Total Environ; 2014 May; 479-480():292-305. PubMed ID: 24565862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying the effects of human pressure on groundwater quality to support water management strategies in coastal regions: a multi-tracer and statistical approach (Bou-Areg region, Morocco).
    Re V; Sacchi E; Mas-Pla J; Menció A; El Amrani N
    Sci Total Environ; 2014 Dec; 500-501():211-23. PubMed ID: 25217996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relevance of deterministic structures for modeling of transport: the Lauswiesen case study.
    Händel F; Dietrich P
    Ground Water; 2012; 50(6):935-42. PubMed ID: 22582812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Groundwater salinity and hydrochemical processes in the volcano-sedimentary aquifer of La Aldea, Gran Canaria, Canary Islands, Spain.
    Cruz-Fuentes T; Cabrera Mdel C; Heredia J; Custodio E
    Sci Total Environ; 2014 Jun; 484():154-66. PubMed ID: 24698802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.