These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 25178979)
1. Method for distinctive estimation of stored acidity forms in acid mine wastes. Li J; Kawashima N; Fan R; Schumann RC; Gerson AR; Smart RS Environ Sci Technol; 2014 Oct; 48(19):11445-52. PubMed ID: 25178979 [TBL] [Abstract][Full Text] [Related]
2. Geochemistry and pH control of seepage from Ni-Cu rich mine tailings at Selebi Phikwe, Botswana. Sracek O; Kříbek B; Mihaljevič M; Ettler V; Vaněk A; Penížek V; Filip J; Veselovský F; Bagai ZB Environ Monit Assess; 2018 Jul; 190(8):482. PubMed ID: 30039179 [TBL] [Abstract][Full Text] [Related]
3. Acid-base accounting assessment of mine wastes using the chromium reducible sulfur method. Schumann R; Stewart W; Miller S; Kawashima N; Li J; Smart R Sci Total Environ; 2012 May; 424():289-96. PubMed ID: 22444067 [TBL] [Abstract][Full Text] [Related]
4. Integrated approach to assess the environmental impact of mining activities: estimation of the spatial distribution of soil contamination (Panasqueira mining area, Central Portugal). Candeias C; Ávila PF; Ferreira da Silva E; Teixeira JP Environ Monit Assess; 2015 Mar; 187(3):135. PubMed ID: 25702148 [TBL] [Abstract][Full Text] [Related]
5. Occurrence, properties and pollution potential of environmental minerals in acid mine drainage. Valente TM; Leal Gomes C Sci Total Environ; 2009 Jan; 407(3):1135-52. PubMed ID: 19004477 [TBL] [Abstract][Full Text] [Related]
6. Chemical and mineralogical changes of waste and tailings from the Murgul Cu deposit (Artvin, NE Turkey): implications for occurrence of acid mine drainage. Sağlam ES; Akçay M Environ Sci Pollut Res Int; 2016 Apr; 23(7):6584-607. PubMed ID: 26637995 [TBL] [Abstract][Full Text] [Related]
7. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer. Cánovas CR; Macías F; Pérez-López R J Contam Hydrol; 2016 May; 188():29-43. PubMed ID: 26972101 [TBL] [Abstract][Full Text] [Related]
8. A simplified method for estimation of jarosite and acid-forming sulfates in acid mine wastes. Li J; Smart RS; Schumann RC; Gerson AR; Levay G Sci Total Environ; 2007 Feb; 373(1):391-403. PubMed ID: 17196241 [TBL] [Abstract][Full Text] [Related]
9. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine. Bao Y; Guo C; Lu G; Yi X; Wang H; Dang Z Sci Total Environ; 2018 Mar; 616-617():647-657. PubMed ID: 29103647 [TBL] [Abstract][Full Text] [Related]
10. Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China. Liu Q; Chen B; Haderlein S; Gopalakrishnan G; Zhou Y Ecotoxicol Environ Saf; 2018 Jul; 155():50-58. PubMed ID: 29501982 [TBL] [Abstract][Full Text] [Related]
11. Long term metal release and acid generation in abandoned mine wastes containing metal-sulphides. Nieva NE; Borgnino L; García MG Environ Pollut; 2018 Nov; 242(Pt A):264-276. PubMed ID: 29990934 [TBL] [Abstract][Full Text] [Related]
12. Remediation experiment of Ecuadorian acid mine drainage: geochemical models of dissolved species and secondary minerals saturation. Delgado J; Barba-Brioso C; Ayala D; Boski T; Torres S; Calderón E; López F Environ Sci Pollut Res Int; 2019 Dec; 26(34):34854-34872. PubMed ID: 31655982 [TBL] [Abstract][Full Text] [Related]
13. Geochemical behavior of an acid drainage system: the case of the Amarillo River, Famatina (La Rioja, Argentina). Lecomte KL; Maza SN; Collo G; Sarmiento AM; Depetris PJ Environ Sci Pollut Res Int; 2017 Jan; 24(2):1630-1647. PubMed ID: 27796971 [TBL] [Abstract][Full Text] [Related]
14. Impact of acid mine drainages on surficial waters of an abandoned mining site. García-Lorenzo ML; Marimón J; Navarro-Hervás MC; Pérez-Sirvent C; Martínez-Sánchez MJ; Molina-Ruiz J Environ Sci Pollut Res Int; 2016 Apr; 23(7):6014-23. PubMed ID: 26347422 [TBL] [Abstract][Full Text] [Related]
16. Minimization of metal sulphides bioleaching from mine wastes into the aquatic environment. Piervandi Z; Khodadadi Darban A; Mousavi SM; Abdollahy M; Asadollahfardi G; Funari V; Dinelli E Ecotoxicol Environ Saf; 2019 Oct; 182():109443. PubMed ID: 31398782 [TBL] [Abstract][Full Text] [Related]
17. Effect of schwertmannite and jarosite on the formation of hypoxic blackwater during inundation of grass material. Vithana CL; Sullivan LA; Shepherd T Water Res; 2017 Nov; 124():1-10. PubMed ID: 28734957 [TBL] [Abstract][Full Text] [Related]
18. Prevention of sulfide oxidation in waste rock by the addition of lime kiln dust. Nyström E; Kaasalainen H; Alakangas L Environ Sci Pollut Res Int; 2019 Sep; 26(25):25945-25957. PubMed ID: 31273653 [TBL] [Abstract][Full Text] [Related]
19. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Kim EJ; Yoo JC; Baek K Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561 [TBL] [Abstract][Full Text] [Related]
20. A contribution to improve the calculation of the acid generating potential of mining wastes. Chopard A; Benzaazoua M; Bouzahzah H; Plante B; Marion P Chemosphere; 2017 May; 175():97-107. PubMed ID: 28211340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]