BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25179085)

  • 1. Orexin A reverses propofol and thiopental induced cytoskeletal rearrangement in rat neurons.
    Turina D; Gerhardsson H; Bjornstrom K
    J Physiol Pharmacol; 2014 Aug; 65(4):531-41. PubMed ID: 25179085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orexin A inhibits propofol-induced neurite retraction by a phospholipase D/protein kinase Cε-dependent mechanism in neurons.
    Björnström K; Turina D; Strid T; Sundqvist T; Eintrei C
    PLoS One; 2014; 9(5):e97129. PubMed ID: 24828410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orexin a phosphorylates the γ-Aminobutyric acid type A receptor β2 subunit on a serine residue and changes the surface expression of the receptor in SH-SY5Y cells exposed to propofol.
    Andersson H; Björnström K; Eintrei C; Sundqvist T
    J Neurosci Res; 2015 Nov; 93(11):1748-55. PubMed ID: 26283475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of the signal transduction cascade caused by propofol in rat neurons: from the GABA(A) receptor to the cytoskeleton.
    Björnström K; Turina D; Loverock A; Lundgren S; Wijkman M; Lindroth M; Eintrei Ch
    J Physiol Pharmacol; 2008 Sep; 59(3):617-32. PubMed ID: 18953102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reorganization of actin in neurons after propofol exposure.
    Oscarsson A; Massoumi R; Sjölander A; Eintrei C
    Acta Anaesthesiol Scand; 2001 Nov; 45(10):1215-20. PubMed ID: 11736672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The difference between sleep and anaesthesia is in the intracellular signal: propofol and GABA use different subtypes of the GABA(A) receptor beta subunit and vary in their interaction with actin.
    Björnström K; Eintrei C
    Acta Anaesthesiol Scand; 2003 Feb; 47(2):157-64. PubMed ID: 12631044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propofol and thiopental suppress amyloid fibril formation and GM1 ganglioside expression through the γ-aminobutyric acid A receptor.
    Yamamoto N; Arima H; Sugiura T; Hirate H; Taniura H; Suzuki K; Sobue K
    Anesthesiology; 2013 Jun; 118(6):1408-16. PubMed ID: 23422796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of propofol on actin, ERK-1/2 and GABAA receptor content in neurones.
    Oscarsson A; Juhas M; Sjölander A; Eintrei C
    Acta Anaesthesiol Scand; 2007 Oct; 51(9):1184-9. PubMed ID: 17850559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of intravenous anesthetic agents on glutamate release: a role for GABAA receptor-mediated inhibition.
    Buggy DJ; Nicol B; Rowbotham DJ; Lambert DG
    Anesthesiology; 2000 Apr; 92(4):1067-73. PubMed ID: 10754627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of thiopental, ketamine, etomidate, propofol and midazolam on the production of adrenomedullin and endothelin-1 in vascular smooth muscle cells.
    Hayashi Y; Minamino N; Isumi Y; Kangawa K; Kuro M; Matsuo H
    Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):325-31. PubMed ID: 10509742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiopulmonary effects of anesthetic induction with thiopental, propofol, or a combination of ketamine hydrochloride and diazepam in dogs sedated with a combination of medetomidine and hydromorphone.
    Enouri SS; Kerr CL; McDonell WN; Dyson DH
    Am J Vet Res; 2008 May; 69(5):586-95. PubMed ID: 18447788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of intravenous anesthetics on ciliary motility in cultured rat tracheal epithelial cells.
    Iida H; Matsuura S; Shirakami G; Tanimoto K; Fukuda K
    Can J Anaesth; 2006 Mar; 53(3):242-9. PubMed ID: 16527787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intravenous anaesthetics inhibit nicotinic acetylcholine receptor-mediated currents and Ca2+ transients in rat intracardiac ganglion neurons.
    Weber M; Motin L; Gaul S; Beker F; Fink RH; Adams DJ
    Br J Pharmacol; 2005 Jan; 144(1):98-107. PubMed ID: 15644873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ketamine, midazolam, thiopental, and propofol on brain ischemia injury in rat cerebral cortical slices.
    Xue QS; Yu BW; Wang ZJ; Chen HZ
    Acta Pharmacol Sin; 2004 Jan; 25(1):115-20. PubMed ID: 14704132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propofol acts at the sigma-1 receptor and inhibits pentazocine-induced c-Fos expression in the mouse posterior cingulate and retrosplenial cortices.
    Yamada M; Nakao S; Sakamoto S; Takamori Y; Tamura Y; Mochizuki-Oda N; Kataoka Y; Yamada H; Shingu K
    Acta Anaesthesiol Scand; 2006 Aug; 50(7):875-81. PubMed ID: 16879472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABAmimetic intravenous anaesthetics inhibit spontaneous Ca2+ -oscillations in cultured hippocampal neurons.
    Sinner B; Friedrich O; Zink W; Fink RH; Graf BM
    Acta Anaesthesiol Scand; 2006 Jul; 50(6):742-8. PubMed ID: 16987371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tyrosine kinase regulates propofol-induced modulation of the beta-subunit of the GABA(A) receptor and release of intracellular calcium in cortical rat neurones.
    Björnström K; Sjölander A; Schippert A; Eintrei C
    Acta Physiol Scand; 2002 Jul; 175(3):227-35. PubMed ID: 12100362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cholinergic crisis on the potency of different emergency anaesthesia protocols in soman-poisoned rats.
    Marquart K; Herbert J; Amend N; Thiermann H; Worek F; Wille T
    Clin Toxicol (Phila); 2019 May; 57(5):343-349. PubMed ID: 30307341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propofol causes neurite retraction in neurones.
    Turina D; Loitto VM; Björnström K; Sundqvist T; Eintrei C
    Br J Anaesth; 2008 Sep; 101(3):374-9. PubMed ID: 18587139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative evaluation of the neuroprotective effects of thiopental sodium, propofol, and halothane on brain ischemia in the gerbil: effects of the anesthetics on ischemic depolarization and extracellular glutamate concentration.
    Kobayashi M; Takeda Y; Taninishi H; Takata K; Aoe H; Morita K
    J Neurosurg Anesthesiol; 2007 Jul; 19(3):171-8. PubMed ID: 17592348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.