BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 25179308)

  • 1. Activation of caspase-dependent apoptosis by intracellular delivery of Cytochrome c-based nanoparticles.
    Morales-Cruz M; Figueroa CM; González-Robles T; Delgado Y; Molina A; Méndez J; Morales M; Griebenow K
    J Nanobiotechnology; 2014 Sep; 12():33. PubMed ID: 25179308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inducing cell death in vitro in cancer cells by targeted delivery of cytochrome c via a transferrin conjugate.
    Saxena M; Delgado Y; Sharma RK; Sharma S; Guzmán SLPL; Tinoco AD; Griebenow K
    PLoS One; 2018; 13(4):e0195542. PubMed ID: 29649293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of a cytochrome c with novel caspase-3 activation activity from the pathogenic fungus Rhizopus arrhizus.
    Saxena M; Sharma RK; Ramirez-Paz J; Tinoco AD; Griebenow K
    BMC Biochem; 2015 Sep; 16():21. PubMed ID: 26334686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-penetrating protein-recognizing polymeric nanoparticles through dynamic covalent chemistry and double imprinting.
    Ghosh A; Sharma M; Zhao Y
    Nat Commun; 2024 May; 15(1):3731. PubMed ID: 38702306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Plasma Membrane Perforation Generated by a Microfluidic Probe for Single-Cell Intracellular Protein Delivery.
    Song Y; Zhang Q; Lin J; Li Y; Sun Y; Lin JM
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38666624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman-Based in Situ Monitoring of Changes in Molecular Signatures during Mitochondrially Mediated Apoptosis.
    Shin HJ; Lee JH; Kim YD; Shin I; Sim T; Lim DK
    ACS Omega; 2019 May; 4(5):8188-8195. PubMed ID: 31459907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting mitochondria by Zn(II)N-alkylpyridylporphyrins: the impact of compound sub-mitochondrial partition on cell respiration and overall photodynamic efficacy.
    Odeh AM; Craik JD; Ezzeddine R; Tovmasyan A; Batinic-Haberle I; Benov LT
    PLoS One; 2014; 9(9):e108238. PubMed ID: 25250732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into the targeting of a subset of tail-anchored proteins to the outer mitochondrial membrane.
    Marty NJ; Teresinski HJ; Hwang YT; Clendening EA; Gidda SK; Sliwinska E; Zhang D; Miernyk JA; Brito GC; Andrews DW; Dyer JM; Mullen RT
    Front Plant Sci; 2014; 5():426. PubMed ID: 25237314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro assays of mitochondrial function/dysfunction.
    Than TA; Win S; Kaplowitz N
    Clin Pharmacol Ther; 2014 Dec; 96(6):665-8. PubMed ID: 25207701
    [No Abstract]   [Full Text] [Related]  

  • 10. [Mitochondrial activities of citrate synthase, carnitine palmitoyltransferase-1 and cytochrome C oxidase are increased during the apoptotic process in hepatocytes of a rat model of acute liver failure].
    Chen L; Yang B; Zhou L; Duan Z; Liu W; Ding M
    Zhonghua Gan Zang Bing Za Zhi; 2014 Jun; 22(6):456-61. PubMed ID: 25203711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Modification of Cytochrome C for Acid-Responsive Intracellular Apoptotic Protein Delivery for Cancer Eradication.
    Tang B; Lau KM; Zhu Y; Shao C; Wong WT; Chow LMC; Wong CTT
    Pharmaceutics; 2024 Jan; 16(1):. PubMed ID: 38258082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome c in cancer therapy and prognosis.
    Pessoa J
    Biosci Rep; 2022 Dec; 42(12):. PubMed ID: 36479932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome c: Using Biological Insight toward Engineering an Optimized Anticancer Biodrug.
    Delinois LJ; De León-Vélez O; Vázquez-Medina A; Vélez-Cabrera A; Marrero-Sánchez A; Nieves-Escobar C; Alfonso-Cano D; Caraballo-Rodríguez D; Rodriguez-Ortiz J; Acosta-Mercado J; Benjamín-Rivera JA; González-González K; Fernández-Adorno K; Santiago-Pagán L; Delgado-Vergara R; Torres-Ávila X; Maser-Figueroa A; Grajales-Avilés G; Miranda Méndez GI; Santiago-Pagán J; Nieves-Santiago M; Álvarez-Carrillo V; Griebenow K; Tinoco AD
    Inorganics (Basel); 2021 Nov; 9(11):. PubMed ID: 35978717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Mechanisms of Epigenetic Regulation, Inflammation, and Cell Death in ADPKD.
    Agborbesong E; Li LX; Li L; Li X
    Front Mol Biosci; 2022; 9():922428. PubMed ID: 35847973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysine-PEGylated Cytochrome C with Enhanced Shelf-Life Stability.
    Santos JHPM; Feitosa VA; Meneguetti GP; Carretero G; Coutinho JAP; Ventura SPM; Rangel-Yagui CO
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Anti-Cancer Drug Sensitivity-Related Genetic Differences on Therapeutic Approaches in Refractory Papillary Thyroid Cancer.
    Yun HJ; Kim M; Kim SY; Fang S; Kim Y; Chang HS; Chang HJ; Park KC
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulated Electro-Hyperthermia Supports the Effect of Gemcitabine Both in Sensitive and Resistant Pancreas Adenocarcinoma Cell Lines.
    Forika G; Kiss E; Petovari G; Danko T; Gellert AB; Krenacs T
    Pathol Oncol Res; 2021; 27():1610048. PubMed ID: 34955688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exogenous Introduction of Initiator and Executioner Caspases Results in Different Apoptotic Outcomes.
    Anson F; Thayumanavan S; Hardy JA
    JACS Au; 2021 Aug; 1(8):1240-1256. PubMed ID: 34467362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane-Interacting DNA Nanotubes Induce Cancer Cell Death.
    Kocabey S; Ekim Kocabey A; Schneiter R; Rüegg C
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443832
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.