These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 25179428)
1. Biofunctionalization of multiwalled carbon nanotubes by electropolymerized poly(pyrrole-concanavalin A) films. Papper V; Elouarzaki K; Gorgy K; Sukharaharja A; Cosnier S; Marks RS Chemistry; 2014 Oct; 20(42):13561-4. PubMed ID: 25179428 [TBL] [Abstract][Full Text] [Related]
2. Biofunctionalization of multiwalled carbon nanotubes by irradiation of electropolymerized poly(pyrrole-diazirine) films. Papper V; Gorgy K; Elouarzaki K; Sukharaharja A; Cosnier S; Marks RS Chemistry; 2013 Jul; 19(29):9639-43. PubMed ID: 23754669 [TBL] [Abstract][Full Text] [Related]
3. Electrodeposition of polypyrrole-multiwalled carbon nanotube-glucose oxidase nanobiocomposite film for the detection of glucose. Tsai YC; Li SC; Liao SW Biosens Bioelectron; 2006 Oct; 22(4):495-500. PubMed ID: 16870421 [TBL] [Abstract][Full Text] [Related]
4. Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode. Zhu L; Yang R; Zhai J; Tian C Biosens Bioelectron; 2007 Nov; 23(4):528-35. PubMed ID: 17764922 [TBL] [Abstract][Full Text] [Related]
5. Utilization of highly purified single wall carbon nanotubes dispersed in polymer thin films for an improved performance of an electrochemical glucose sensor. Goornavar V; Jeffers R; Biradar S; Ramesh GT Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():299-307. PubMed ID: 24857497 [TBL] [Abstract][Full Text] [Related]
6. Non-covalent biofunctionalization of single-walled carbon nanotubes via biotin attachment by π-stacking interactions and pyrrole polymerization. Haddad R; Cosnier S; Maaref A; Holzinger M Analyst; 2009 Dec; 134(12):2412-8. PubMed ID: 19918610 [TBL] [Abstract][Full Text] [Related]
7. Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors. Ekanayake EM; Preethichandra DM; Kaneto K Biosens Bioelectron; 2007 Aug; 23(1):107-13. PubMed ID: 17475472 [TBL] [Abstract][Full Text] [Related]
8. Single Walled Carbon Nanotubes/polypyrrole-GOx composite films to modify gold microelectrodes for glucose biosensors: Study of the extended linearity. Valentini F; Galache Fernàndez L; Tamburri E; Palleschi G Biosens Bioelectron; 2013 May; 43():75-8. PubMed ID: 23277343 [TBL] [Abstract][Full Text] [Related]
9. Immobilized enzyme-single-wall carbon nanotube composites for amperometric glucose detection at a very low applied potential. Lyons ME; Keeley GP Chem Commun (Camb); 2008 Jun; (22):2529-31. PubMed ID: 18506233 [TBL] [Abstract][Full Text] [Related]
10. Capability of parasulfonato calix[6]arene, as an anion dopant, and organic solvents in enhancing the sensitivity and loading of glucose oxidase (GOx) on polypyrrole film in a biosensor: a comparative study. Safarnavadeh V; Zare K; Fakhari AR Biosens Bioelectron; 2013 Nov; 49():159-63. PubMed ID: 23743327 [TBL] [Abstract][Full Text] [Related]
11. L-amino acid biosensor based on L-amino acid oxidase immobilized onto NiHCNFe/c-MWCNT/PPy/GC electrode. Lata S; Pundir CS Int J Biol Macromol; 2013 Mar; 54():250-7. PubMed ID: 23237796 [TBL] [Abstract][Full Text] [Related]
12. Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Joshi PP; Merchant SA; Wang Y; Schmidtke DW Anal Chem; 2005 May; 77(10):3183-8. PubMed ID: 15889907 [TBL] [Abstract][Full Text] [Related]
13. Adsorption of glucose oxidase onto single-walled carbon nanotubes and its application in layer-by-layer biosensors. Tsai TW; Heckert G; Neves LF; Tan Y; Kao DY; Harrison RG; Resasco DE; Schmidtke DW Anal Chem; 2009 Oct; 81(19):7917-25. PubMed ID: 19788314 [TBL] [Abstract][Full Text] [Related]
14. A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes-polyelectrolyte-loaded electrospun nanofibrous membrane. Manesh KM; Kim HT; Santhosh P; Gopalan AI; Lee KP Biosens Bioelectron; 2008 Jan; 23(6):771-9. PubMed ID: 17905578 [TBL] [Abstract][Full Text] [Related]
15. The effect of copolymerization and carbon nanoelements on the performance of poly(2,5-di(thienyl)pyrrole) biosensors. Altun A; Apetrei RM; Camurlu P Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110069. PubMed ID: 31546439 [TBL] [Abstract][Full Text] [Related]
16. Adamantane/beta-cyclodextrin affinity biosensors based on single-walled carbon nanotubes. Holzinger M; Bouffier L; Villalonga R; Cosnier S Biosens Bioelectron; 2009 Jan; 24(5):1128-34. PubMed ID: 18755582 [TBL] [Abstract][Full Text] [Related]
17. A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode. Lim SH; Wei J; Lin J; Li Q; Kuayou J Biosens Bioelectron; 2005 May; 20(11):2341-6. PubMed ID: 15797337 [TBL] [Abstract][Full Text] [Related]
18. Bioactive electroconductive hydrogels: the effects of electropolymerization charge density on the storage stability of an enzyme-based biosensor. Kotanen CN; Tlili C; Guiseppi-Elie A Appl Biochem Biotechnol; 2012 Feb; 166(4):878-88. PubMed ID: 22212391 [TBL] [Abstract][Full Text] [Related]
19. Highly sensitive and selective glutamate microbiosensor based on cast polyurethane/AC-electrophoresis deposited multiwalled carbon nanotubes and then glutamate oxidase/electrosynthesized polypyrrole/Pt electrode. Ammam M; Fransaer J Biosens Bioelectron; 2010 Mar; 25(7):1597-602. PubMed ID: 20034783 [TBL] [Abstract][Full Text] [Related]
20. Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Qiu JD; Zhou WM; Guo J; Wang R; Liang RP Anal Biochem; 2009 Feb; 385(2):264-9. PubMed ID: 19100707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]