These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25179560)

  • 1. Near-field interferometry of a free-falling nanoparticle from a point-like source.
    Bateman J; Nimmrichter S; Hornberger K; Ulbricht H
    Nat Commun; 2014 Sep; 5():4788. PubMed ID: 25179560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free Nano-Object Ramsey Interferometry for Large Quantum Superpositions.
    Wan C; Scala M; Morley GW; Rahman AA; Ulbricht H; Bateman J; Barker PF; Bose S; Kim MS
    Phys Rev Lett; 2016 Sep; 117(14):143003. PubMed ID: 27740804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum superposition at the half-metre scale.
    Kovachy T; Asenbaum P; Overstreet C; Donnelly CA; Dickerson SM; Sugarbaker A; Hogan JM; Kasevich MA
    Nature; 2015 Dec; 528(7583):530-3. PubMed ID: 26701053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large quantum superpositions and interference of massive nanometer-sized objects.
    Romero-Isart O; Pflanzer AC; Blaser F; Kaltenbaek R; Kiesel N; Aspelmeyer M; Cirac JI
    Phys Rev Lett; 2011 Jul; 107(2):020405. PubMed ID: 21797585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matter-wave interference of particles selected from a molecular library with masses exceeding 10,000 amu.
    Eibenberger S; Gerlich S; Arndt M; Mayor M; Tüxen J
    Phys Chem Chem Phys; 2013 Sep; 15(35):14696-700. PubMed ID: 23900710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum control of a nanoparticle optically levitated in cryogenic free space.
    Tebbenjohanns F; Mattana ML; Rossi M; Frimmer M; Novotny L
    Nature; 2021 Jul; 595(7867):378-382. PubMed ID: 34262214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry.
    Müller-Ebhardt H; Rehbein H; Schnabel R; Danzmann K; Chen Y
    Phys Rev Lett; 2008 Jan; 100(1):013601. PubMed ID: 18232758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the existence of low-mass dark matter and its direct detection.
    Bateman J; McHardy I; Merle A; Morris TR; Ulbricht H
    Sci Rep; 2015 Jan; 5():8058. PubMed ID: 25622565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unitarity of Decoherence Implies Possibility of Decoherence-like Dynamics towards Macroscopic Superpositions.
    Filatov S; Auzinsh M
    Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoherence of matter waves by thermal emission of radiation.
    Hackermüller L; Hornberger K; Brezger B; Zeilinger A; Arndt M
    Nature; 2004 Feb; 427(6976):711-4. PubMed ID: 14973478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoherence of quantum superpositions through coupling to engineered reservoirs.
    Myatt CJ; King BE; Turchette QA; Sackett CA; Kielpinski D; Itano WM; Monroe C; Wineland DJ
    Nature; 2000 Jan; 403(6767):269-73. PubMed ID: 10659838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Matter-wave interference of a native polypeptide.
    Shayeghi A; Rieser P; Richter G; Sezer U; Rodewald JH; Geyer P; Martinez TJ; Arndt M
    Nat Commun; 2020 Mar; 11(1):1447. PubMed ID: 32193414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bose-Einstein condensation in microgravity.
    van Zoest T; Gaaloul N; Singh Y; Ahlers H; Herr W; Seidel ST; Ertmer W; Rasel E; Eckart M; Kajari E; Arnold S; Nandi G; Schleich WP; Walser R; Vogel A; Sengstock K; Bongs K; Lewoczko-Adamczyk W; Schiemangk M; Schuldt T; Peters A; Könemann T; Müntinga H; Lämmerzahl C; Dittus H; Steinmetz T; Hänsch TW; Reichel J
    Science; 2010 Jun; 328(5985):1540-3. PubMed ID: 20558713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large Quantum Delocalization of a Levitated Nanoparticle Using Optimal Control: Applications for Force Sensing and Entangling via Weak Forces.
    Weiss T; Roda-Llordes M; Torrontegui E; Aspelmeyer M; Romero-Isart O
    Phys Rev Lett; 2021 Jul; 127(2):023601. PubMed ID: 34296896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realization of optical carpets in the Talbot and Talbot-Lau configurations.
    Case WB; Tomandl M; Deachapunya S; Arndt M
    Opt Express; 2009 Nov; 17(23):20966-74. PubMed ID: 19997335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wave-particle duality of C(60) molecules.
    Arndt M; Nairz O; Vos-Andreae J; Keller C; van der Zouw G; Zeilinger A
    Nature; 1999 Oct; 401(6754):680-2. PubMed ID: 18494170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A complementarity experiment with an interferometer at the quantum-classical boundary.
    Bertet P; Osnaghi S; Rauschenbeutel A; Nogues G; Auffeves A; Brune M; Raimond JM; Haroche S
    Nature; 2001 May; 411(6834):166-70. PubMed ID: 11346787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective detection and characterization of nanoparticles from motor vehicles.
    Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN;
    Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motional Sideband Asymmetry of a Nanoparticle Optically Levitated in Free Space.
    Tebbenjohanns F; Frimmer M; Jain V; Windey D; Novotny L
    Phys Rev Lett; 2020 Jan; 124(1):013603. PubMed ID: 31976693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wave nature of biomolecules and fluorofullerenes.
    Hackermüller L; Uttenthaler S; Hornberger K; Reiger E; Brezger B; Zeilinger A; Arndt M
    Phys Rev Lett; 2003 Aug; 91(9):090408. PubMed ID: 14525169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.