These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25179616)

  • 1. Easy method to examine single nerve fiber excitability and conduction parameters using intact nonanesthetized earthworms.
    Bähring R; Bauer CK
    Adv Physiol Educ; 2014 Sep; 38(3):253-64. PubMed ID: 25179616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological correlates of rapid escape reflexes in intact earthworms, Eisenia foetida. I. Functional development of giant nerve fibers during embryonic and postembryonic periods.
    O'Gara B; Vining EP; Drewes CD
    J Neurobiol; 1982 Jul; 13(4):337-53. PubMed ID: 7108516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of electrode to nerve fiber distance and nerve conduction velocity through spectral analysis of the extracellular action potentials recorded from earthworm giant fibers.
    Qiao S; Odoemene O; Yoshida K
    Med Biol Eng Comput; 2012 Aug; 50(8):867-75. PubMed ID: 22714669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impulse conduction in the myelinated giant fibers of the earthworm. Structure and function of the dorsal nodes in the median giant fiber.
    Günther J
    J Comp Neurol; 1976 Aug; 168(4):505-31. PubMed ID: 939820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiological correlates of rapid escape reflexes in intact earthworms, Eisenia foetida. II. Effects of food deprivation on the functional development of giant nerve fibers.
    Vining EP; O'Gara B; Drewes CD
    J Neurobiol; 1982 Jul; 13(4):355-67. PubMed ID: 7108517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental validation of the nerve conduction velocity selective recording technique using a multi-contact cuff electrode.
    Yoshida K; Kurstjens GA; Hennings K
    Med Eng Phys; 2009 Dec; 31(10):1261-70. PubMed ID: 19762269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Donor-recipient interconnections between giant nerve fibers in transplanted ventral nerve cords of earthworms.
    Vining EP; Drewes CD
    J Neurobiol; 1985 Jul; 16(4):283-99. PubMed ID: 4031849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Portable conduction velocity experiments using earthworms for the college and high school neuroscience teaching laboratory.
    Shannon KM; Gage GJ; Jankovic A; Wilson WJ; Marzullo TC
    Adv Physiol Educ; 2014 Mar; 38(1):62-70. PubMed ID: 24585472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement and simulation of unmyelinated nerve electrostimulation: Lumbricus terrestris experiment and numerical model.
    Šarolić A; Živković Z; Reilly JP
    Phys Med Biol; 2016 Jun; 61(12):4364-75. PubMed ID: 27224060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nerve compound action potentials analysed with the simultaneously measured single fibre action potentials in humans.
    Schalow G; Zäch GA
    Electromyogr Clin Neurophysiol; 1994 Dec; 34(8):451-65. PubMed ID: 7882888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct detection of a single evoked action potential with MRS in Lumbricus terrestris.
    Poplawsky AJ; Dingledine R; Hu XP
    NMR Biomed; 2012 Jan; 25(1):123-30. PubMed ID: 21728204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant nerve fibre activity in intact, freely moving earthworms.
    Drewes CD; Landa KB; McFall JL
    J Exp Biol; 1978 Feb; 72():217-27. PubMed ID: 624897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axolemmal and septal conduction in the impedance of the earthworm medial giant nerve fiber.
    Krause TL; Fishman HM; Bittner GD
    Biophys J; 1994 Aug; 67(2):692-5. PubMed ID: 7524713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional specialization of central projections from identified primary afferent fibers.
    Koerber HR; Mendell LM
    J Neurophysiol; 1988 Nov; 60(5):1597-614. PubMed ID: 3199174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of individual embryonic primary afferents and their spinal projections in the rat.
    Mirnics K; Koerber HR
    J Neurophysiol; 1997 Sep; 78(3):1590-600. PubMed ID: 9310445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The classification and identification of human somatic and parasympathetic nerve fibres including urinary bladder afferents and efferents is preserved following spinal cord injury.
    Schalow G
    Electromyogr Clin Neurophysiol; 2009; 49(6-7):263-86. PubMed ID: 19845099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses to electrical and mechanical stimuli of the epithelium in earthworm giant axons identified by lucifer yellow-CH dye.
    Chang YC; Assmé Z
    Braz J Med Biol Res; 1988; 21(2):395-8. PubMed ID: 3203173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal summation of C-fiber afferent inputs: competition between facilitatory and inhibitory effects on C-fiber reflex in the rat.
    Gozariu M; Bragard D; Willer JC; Le Bars D
    J Neurophysiol; 1997 Dec; 78(6):3165-79. PubMed ID: 9405536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between nerve and muscle fiber conduction velocities of the same motor unit in man.
    Okajima Y; Toikawa H; Hanayama K; Ohtsuka T; Kimura A; Chino N
    Neurosci Lett; 1998 Aug; 253(1):65-7. PubMed ID: 9754806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Teaching basic neurophysiology using intact earthworms.
    Kladt N; Hanslik U; Heinzel HG
    J Undergrad Neurosci Educ; 2010; 9(1):A20-35. PubMed ID: 23494516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.