These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 25180049)
1. CRISPR-Cas immunity and mobile DNA: a new superfamily of DNA transposons encoding a Cas1 endonuclease. Hickman AB; Dyda F Mob DNA; 2014; 5():23. PubMed ID: 25180049 [TBL] [Abstract][Full Text] [Related]
2. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. Krupovic M; Makarova KS; Forterre P; Prangishvili D; Koonin EV BMC Biol; 2014 May; 12():36. PubMed ID: 24884953 [TBL] [Abstract][Full Text] [Related]
3. Casposons - silent heroes of the CRISPR-Cas systems evolutionary history. Smaruj P; Kieliszek M EXCLI J; 2023; 22():70-83. PubMed ID: 36814855 [TBL] [Abstract][Full Text] [Related]
4. The casposon-encoded Cas1 protein from Aciduliprofundum boonei is a DNA integrase that generates target site duplications. Hickman AB; Dyda F Nucleic Acids Res; 2015 Dec; 43(22):10576-87. PubMed ID: 26573596 [TBL] [Abstract][Full Text] [Related]
5. Recent Mobility of Casposons, Self-Synthesizing Transposons at the Origin of the CRISPR-Cas Immunity. Krupovic M; Shmakov S; Makarova KS; Forterre P; Koonin EV Genome Biol Evol; 2016 Jan; 8(2):375-86. PubMed ID: 26764427 [TBL] [Abstract][Full Text] [Related]
6. Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back. Koonin EV; Makarova KS Genome Biol Evol; 2017 Oct; 9(10):2812-2825. PubMed ID: 28985291 [TBL] [Abstract][Full Text] [Related]
7. Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery. Krupovic M; Béguin P; Koonin EV Curr Opin Microbiol; 2017 Aug; 38():36-43. PubMed ID: 28472712 [TBL] [Abstract][Full Text] [Related]
8. Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems. Béguin P; Charpin N; Koonin EV; Forterre P; Krupovic M Nucleic Acids Res; 2016 Dec; 44(21):10367-10376. PubMed ID: 27655632 [TBL] [Abstract][Full Text] [Related]
9. Unprecedented Diversity of Unique CRISPR-Cas-Related Systems and Cas1 Homologs in Asgard Archaea. Makarova KS; Wolf YI; Shmakov SA; Liu Y; Li M; Koonin EV CRISPR J; 2020 Jun; 3(3):156-163. PubMed ID: 33555973 [TBL] [Abstract][Full Text] [Related]
10. ISC, a Novel Group of Bacterial and Archaeal DNA Transposons That Encode Cas9 Homologs. Kapitonov VV; Makarova KS; Koonin EV J Bacteriol; 2015 Dec; 198(5):797-807. PubMed ID: 26712934 [TBL] [Abstract][Full Text] [Related]
11. Active in vivo translocation of the Methanosarcina mazei Gö1 Casposon. Gehlert FO; Nickel L; Vakirlis N; Hammerschmidt K; Vargas Gebauer HI; Kießling C; Kupczok A; Schmitz RA Nucleic Acids Res; 2023 Jul; 51(13):6927-6943. PubMed ID: 37254817 [TBL] [Abstract][Full Text] [Related]
12. Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas. Hickman AB; Kailasan S; Genzor P; Haase AD; Dyda F Elife; 2020 Jan; 9():. PubMed ID: 31913120 [TBL] [Abstract][Full Text] [Related]
13. Spy: a new group of eukaryotic DNA transposons without target site duplications. Han MJ; Xu HE; Zhang HH; Feschotte C; Zhang Z Genome Biol Evol; 2014 Jun; 6(7):1748-57. PubMed ID: 24966181 [TBL] [Abstract][Full Text] [Related]
14. Phylogenomics of Cas4 family nucleases. Hudaiberdiev S; Shmakov S; Wolf YI; Terns MP; Makarova KS; Koonin EV BMC Evol Biol; 2017 Nov; 17(1):232. PubMed ID: 29179671 [TBL] [Abstract][Full Text] [Related]
15. Sequence motifs recognized by the casposon integrase of Aciduliprofundum boonei. Béguin P; Chekli Y; Sezonov G; Forterre P; Krupovic M Nucleic Acids Res; 2019 Jul; 47(12):6386-6395. PubMed ID: 31114911 [TBL] [Abstract][Full Text] [Related]
16. Classification and evolution of type II CRISPR-Cas systems. Chylinski K; Makarova KS; Charpentier E; Koonin EV Nucleic Acids Res; 2014 Jun; 42(10):6091-105. PubMed ID: 24728998 [TBL] [Abstract][Full Text] [Related]
17. Integration of diverse DNA substrates by a casposase can be targeted to R-loops in vitro by its fusion to Cas9. Lau CH; Bolt EL Biosci Rep; 2021 Jan; 41(1):. PubMed ID: 33289517 [TBL] [Abstract][Full Text] [Related]
18. Self-synthesizing transposons: unexpected key players in the evolution of viruses and defense systems. Krupovic M; Koonin EV Curr Opin Microbiol; 2016 Jun; 31():25-33. PubMed ID: 26836982 [TBL] [Abstract][Full Text] [Related]
19. Identification of RAG-like transposons in protostomes suggests their ancient bilaterian origin. Martin EC; Vicari C; Tsakou-Ngouafo L; Pontarotti P; Petrescu AJ; Schatz DG Mob DNA; 2020; 11():17. PubMed ID: 32399063 [TBL] [Abstract][Full Text] [Related]
20. A unique eukaryotic lineage of composite-like DNA transposons encoding a DDD/E transposase and a His-Me finger homing endonuclease. Kojima KK; Bao W Mob DNA; 2022 Oct; 13(1):24. PubMed ID: 36273192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]