BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 25180309)

  • 1. Generative models of rich clubs in Hebbian neuronal networks and large-scale human brain networks.
    Vértes PE; Alexander-Bloch A; Bullmore ET
    Philos Trans R Soc Lond B Biol Sci; 2014 Oct; 369(1653):. PubMed ID: 25180309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unifying framework for measuring weighted rich clubs.
    Alstott J; Panzarasa P; Rubinov M; Bullmore ET; Vértes PE
    Sci Rep; 2014 Dec; 4():7258. PubMed ID: 25435201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rich club organization supports a diverse set of functional network configurations.
    Senden M; Deco G; de Reus MA; Goebel R; van den Heuvel MP
    Neuroimage; 2014 Aug; 96():174-82. PubMed ID: 24699017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of rich-club topology and coordinated dynamics in development of hippocampal functional networks in vitro.
    Schroeter MS; Charlesworth P; Kitzbichler MG; Paulsen O; Bullmore ET
    J Neurosci; 2015 Apr; 35(14):5459-70. PubMed ID: 25855164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reorganization of rich-clubs in functional brain networks during propofol-induced unconsciousness and natural sleep.
    Wang S; Li Y; Qiu S; Zhang C; Wang G; Xian J; Li T; He H
    Neuroimage Clin; 2020; 25():102188. PubMed ID: 32018124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Rich-Club Organization in Rat Functional Brain Network to Balance Between Communication Cost and Efficiency.
    Liang X; Hsu LM; Lu H; Sumiyoshi A; He Y; Yang Y
    Cereb Cortex; 2018 Mar; 28(3):924-935. PubMed ID: 28108494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs.
    Zamora-López G; Chen Y; Deco G; Kringelbach ML; Zhou C
    Sci Rep; 2016 Dec; 6():38424. PubMed ID: 27917958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The economy of brain network organization.
    Bullmore E; Sporns O
    Nat Rev Neurosci; 2012 Apr; 13(5):336-49. PubMed ID: 22498897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Pareto optimality to explore the topology and dynamics of the human connectome.
    Avena-Koenigsberger A; Goñi J; Betzel RF; van den Heuvel MP; Griffa A; Hagmann P; Thiran JP; Sporns O
    Philos Trans R Soc Lond B Biol Sci; 2014 Oct; 369(1653):. PubMed ID: 25180308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rich club of the C. elegans neuronal connectome.
    Towlson EK; Vértes PE; Ahnert SE; Schafer WR; Bullmore ET
    J Neurosci; 2013 Apr; 33(15):6380-7. PubMed ID: 23575836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency.
    Chen Y; Wang S; Hilgetag CC; Zhou C
    PLoS Comput Biol; 2017 Sep; 13(9):e1005776. PubMed ID: 28961235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rich club organization and intermodule communication in the cat connectome.
    de Reus MA; van den Heuvel MP
    J Neurosci; 2013 Aug; 33(32):12929-39. PubMed ID: 23926249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Communication efficiency and congestion of signal traffic in large-scale brain networks.
    Mišić B; Sporns O; McIntosh AR
    PLoS Comput Biol; 2014 Jan; 10(1):e1003427. PubMed ID: 24415931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General differential Hebbian learning: Capturing temporal relations between events in neural networks and the brain.
    Zappacosta S; Mannella F; Mirolli M; Baldassarre G
    PLoS Comput Biol; 2018 Aug; 14(8):e1006227. PubMed ID: 30153263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular topology emerges from plasticity in a minimalistic excitable network model.
    Damicelli F; Hilgetag CC; Hütt MT; Messé A
    Chaos; 2017 Apr; 27(4):047406. PubMed ID: 28456166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional rich club organization of the brain in children and adults.
    Grayson DS; Ray S; Carpenter S; Iyer S; Dias TG; Stevens C; Nigg JT; Fair DA
    PLoS One; 2014; 9(2):e88297. PubMed ID: 24505468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractal rules in brain networks: Signatures of self-organization.
    Singh SS; Haobijam D; Malik MZ; Ishrat R; Singh RKB
    J Theor Biol; 2018 Jan; 437():58-66. PubMed ID: 28935234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of sequential activity in networks with temporally asymmetric Hebbian learning.
    Gillett M; Pereira U; Brunel N
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29948-29958. PubMed ID: 33177232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rich-club neurocircuitry: function, evolution, and vulnerability.
    Griffa A; Van den Heuvel MP
    Dialogues Clin Neurosci; 2018 Jun; 20(2):121-132. PubMed ID: 30250389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rich-club organization of the human connectome.
    van den Heuvel MP; Sporns O
    J Neurosci; 2011 Nov; 31(44):15775-86. PubMed ID: 22049421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.