BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 25180309)

  • 21. Homeostatic Activity-Dependent Tuning of Recurrent Networks for Robust Propagation of Activity.
    Gjorgjieva J; Evers JF; Eglen SJ
    J Neurosci; 2016 Mar; 36(13):3722-34. PubMed ID: 27030758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The relation between structural and functional connectivity patterns in complex brain networks.
    Stam CJ; van Straaten EC; Van Dellen E; Tewarie P; Gong G; Hillebrand A; Meier J; Van Mieghem P
    Int J Psychophysiol; 2016 May; 103():149-60. PubMed ID: 25678023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combining Hebbian and reinforcement learning in a minibrain model.
    Bosman RJ; van Leeuwen WA; Wemmenhove B
    Neural Netw; 2004 Jan; 17(1):29-36. PubMed ID: 14690704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems.
    Chen Y; Wang S; Hilgetag CC; Zhou C
    PLoS Comput Biol; 2013; 9(3):e1002937. PubMed ID: 23505352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rich-cores in networks.
    Ma A; Mondragón RJ
    PLoS One; 2015; 10(3):e0119678. PubMed ID: 25799585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-organized criticality and scale-free properties in emergent functional neural networks.
    Shin CW; Kim S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):045101. PubMed ID: 17155118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Abnormal rich club organization and impaired correlation between structural and functional connectivity in migraine sufferers.
    Li K; Liu L; Yin Q; Dun W; Xu X; Liu J; Zhang M
    Brain Imaging Behav; 2017 Apr; 11(2):526-540. PubMed ID: 26922054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The diverse club.
    Bertolero MA; Yeo BTT; D'Esposito M
    Nat Commun; 2017 Nov; 8(1):1277. PubMed ID: 29097714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Critical synchronization and 1/f noise in inhibitory/excitatory rich-club neural networks.
    Aguilar-Velázquez D; Guzmán-Vargas L
    Sci Rep; 2019 Feb; 9(1):1258. PubMed ID: 30718817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An anatomical substrate for integration among functional networks in human cortex.
    van den Heuvel MP; Sporns O
    J Neurosci; 2013 Sep; 33(36):14489-500. PubMed ID: 24005300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DEVELOPMENT OF THE "RICH CLUB" IN BRAIN CONNECTIVITY NETWORKS FROM 438 ADOLESCENTS & ADULTS AGED 12 TO 30.
    Dennis EL; Jahanshad N; Toga AW; McMahon KL; de Zubicaray GI; Hickie I; Wright MJ; Thompson PM
    Proc IEEE Int Symp Biomed Imaging; 2013; ():624-627. PubMed ID: 24827471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward a theory of coactivation patterns in excitable neural networks.
    Messé A; Hütt MT; Hilgetag CC
    PLoS Comput Biol; 2018 Apr; 14(4):e1006084. PubMed ID: 29630592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach.
    Zhu L; Lai YC; Hoppensteadt FC; He J
    Chaos; 2006 Jun; 16(2):023105. PubMed ID: 16822008
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Revisiting the global workspace orchestrating the hierarchical organization of the human brain.
    Deco G; Vidaurre D; Kringelbach ML
    Nat Hum Behav; 2021 Apr; 5(4):497-511. PubMed ID: 33398141
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synaptic Impairment and Robustness of Excitatory Neuronal Networks with Different Topologies.
    Mirzakhalili E; Gourgou E; Booth V; Epureanu B
    Front Neural Circuits; 2017; 11():38. PubMed ID: 28659765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Do Brain Networks Evolve by Maximizing Their Information Flow Capacity?
    Antonopoulos CG; Srivastava S; Pinto SE; Baptista MS
    PLoS Comput Biol; 2015 Aug; 11(8):e1004372. PubMed ID: 26317592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Intrinsic Similarity of Topological Structure in Biological Neural Networks.
    Zhao H; Shao C; Shi Z; He S; Gong Z
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3292-3305. PubMed ID: 37224366
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The modulation of neural gain facilitates a transition between functional segregation and integration in the brain.
    Shine JM; Aburn MJ; Breakspear M; Poldrack RA
    Elife; 2018 Jan; 7():. PubMed ID: 29376825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rich club organization of macaque cerebral cortex and its role in network communication.
    Harriger L; van den Heuvel MP; Sporns O
    PLoS One; 2012; 7(9):e46497. PubMed ID: 23029538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Individual variability in the anatomical distribution of nodes participating in rich club structural networks.
    Kocher M; Gleichgerrcht E; Nesland T; Rorden C; Fridriksson J; Spampinato MV; Bonilha L
    Front Neural Circuits; 2015; 9():16. PubMed ID: 25954161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.