These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 25180309)

  • 41. Discrete combinatorial circuits emerging in neural networks: a mechanism for rules of grammar in the human brain?
    Pulvermüller F; Knoblauch A
    Neural Netw; 2009 Mar; 22(2):161-72. PubMed ID: 19237262
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Memory replay in balanced recurrent networks.
    Chenkov N; Sprekeler H; Kempter R
    PLoS Comput Biol; 2017 Jan; 13(1):e1005359. PubMed ID: 28135266
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Brain organization into resting state networks emerges at criticality on a model of the human connectome.
    Haimovici A; Tagliazucchi E; Balenzuela P; Chialvo DR
    Phys Rev Lett; 2013 Apr; 110(17):178101. PubMed ID: 23679783
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Anti-Hebbian learning in a non-linear neural network.
    Carlson A
    Biol Cybern; 1990; 64(2):171-6. PubMed ID: 2291904
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of symmetry in neural networks and their Laplacian spectra.
    de Lange SC; van den Heuvel MP; de Reus MA
    Neuroimage; 2016 Nov; 141():357-365. PubMed ID: 27475289
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits.
    Bassett DS; Greenfield DL; Meyer-Lindenberg A; Weinberger DR; Moore SW; Bullmore ET
    PLoS Comput Biol; 2010 Apr; 6(4):e1000748. PubMed ID: 20421990
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A reward-modulated hebbian learning rule can explain experimentally observed network reorganization in a brain control task.
    Legenstein R; Chase SM; Schwartz AB; Maass W
    J Neurosci; 2010 Jun; 30(25):8400-10. PubMed ID: 20573887
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity.
    Sadeh S; Clopath C; Rotter S
    PLoS Comput Biol; 2015 Jun; 11(6):e1004307. PubMed ID: 26090844
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A generative network model of neurodevelopmental diversity in structural brain organization.
    Akarca D; Vértes PE; Bullmore ET; ; Astle DE
    Nat Commun; 2021 Jul; 12(1):4216. PubMed ID: 34244490
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks.
    Siri B; Berry H; Cessac B; Delord B; Quoy M
    Neural Comput; 2008 Dec; 20(12):2937-66. PubMed ID: 18624656
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Emergence of stable functional networks in long-term human electroencephalography.
    Chu CJ; Kramer MA; Pathmanathan J; Bianchi MT; Westover MB; Wizon L; Cash SS
    J Neurosci; 2012 Feb; 32(8):2703-13. PubMed ID: 22357854
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of connectivity on information in neural networks.
    Onesto V; Narducci R; Amato F; Cancedda L; Gentile F
    Integr Biol (Camb); 2018 Feb; 10(2):121-127. PubMed ID: 29393320
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A generative model of whole-brain effective connectivity.
    Frässle S; Lomakina EI; Kasper L; Manjaly ZM; Leff A; Pruessmann KP; Buhmann JM; Stephan KE
    Neuroimage; 2018 Oct; 179():505-529. PubMed ID: 29807151
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural and functional brain networks: from connections to cognition.
    Park HJ; Friston K
    Science; 2013 Nov; 342(6158):1238411. PubMed ID: 24179229
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biologically plausible learning in neural networks with modulatory feedback.
    Grant WS; Tanner J; Itti L
    Neural Netw; 2017 Apr; 88():32-48. PubMed ID: 28189041
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Emergence of symmetric, modular, and reciprocal connections in recurrent networks with Hebbian learning.
    Hua SE; Houk JC; Mussa-Ivaldi FA
    Biol Cybern; 1999 Sep; 81(3):211-25. PubMed ID: 10473846
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Linear analysis of auto-organization in Hebbian neural networks.
    Carlos Letelier J; Mpodozis J
    Biol Res; 1995; 28(1):97-104. PubMed ID: 8728824
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 59. From space to time: Spatial inhomogeneities lead to the emergence of spatiotemporal sequences in spiking neuronal networks.
    Spreizer S; Aertsen A; Kumar A
    PLoS Comput Biol; 2019 Oct; 15(10):e1007432. PubMed ID: 31652259
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sex Differences in Anatomical Rich-Club and Structural-Functional Coupling in the Human Brain Network.
    Zhao S; Wang G; Yan T; Xiang J; Yu X; Li H; Wang B
    Cereb Cortex; 2021 Mar; 31(4):1987-1997. PubMed ID: 33230551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.