BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25180562)

  • 1. Mackinawite (FeS) reduces mercury(II) under sulfidic conditions.
    Bone SE; Bargar JR; Sposito G
    Environ Sci Technol; 2014 Sep; 48(18):10681-9. PubMed ID: 25180562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic and spectroscopic characterization of Hg(II) immobilization by mackinawite (FeS).
    Jeong HY; Sun K; Hayes KF
    Environ Sci Technol; 2010 Oct; 44(19):7476-83. PubMed ID: 20825179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS).
    Jeong HY; Klaue B; Blum JD; Hayes KF
    Environ Sci Technol; 2007 Nov; 41(22):7699-705. PubMed ID: 18075077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of aqueous Hg(II) by mackinawite (FeS).
    Liu J; Valsaraj KT; Devai I; DeLaune RD
    J Hazard Mater; 2008 Sep; 157(2-3):432-40. PubMed ID: 18280650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive iron sulfide (FeS)-supported ultrafiltration for removal of mercury (Hg(II)) from water.
    Han DS; Orillano M; Khodary A; Duan Y; Batchelor B; Abdel-Wahab A
    Water Res; 2014 Apr; 53():310-21. PubMed ID: 24530550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of phosphate competition.
    Niazi NK; Burton ED
    Environ Pollut; 2016 Nov; 218():111-117. PubMed ID: 27552044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury methylation rates for geochemically relevant Hg(II) species in sediments.
    Jonsson S; Skyllberg U; Nilsson MB; Westlund PO; Shchukarev A; Lundberg E; Björn E
    Environ Sci Technol; 2012 Nov; 46(21):11653-9. PubMed ID: 23017152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competition between disordered iron sulfide and natural organic matter associated thiols for mercury(II)-an EXAFS study.
    Skyllberg U; Drott A
    Environ Sci Technol; 2010 Feb; 44(4):1254-9. PubMed ID: 20099882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury reduction and oxidation by reduced natural organic matter in anoxic environments.
    Zheng W; Liang L; Gu B
    Environ Sci Technol; 2012 Jan; 46(1):292-9. PubMed ID: 22107154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inorganic mercury binding with different sulfur species in anoxic sediments and their gut juice extractions.
    Zhong H; Wang WX
    Environ Toxicol Chem; 2009 Sep; 28(9):1851-7. PubMed ID: 19366277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions.
    Warner KA; Roden EE; Bonzongo JC
    Environ Sci Technol; 2003 May; 37(10):2159-65. PubMed ID: 12785521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial reaction of Sn(II) on mackinawite (FeS).
    Dulnee S; Scheinost AC
    J Contam Hydrol; 2015; 177-178():183-93. PubMed ID: 25957569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of elemental mercury in lake sediments.
    Bouffard A; Amyot M
    Chemosphere; 2009 Feb; 74(8):1098-103. PubMed ID: 19091379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Sulfide Nanoparticles on Dissolved Mercury and Zinc Quantification by Diffusive Gradient in Thin-Film Passive Samplers.
    Pham AL; Johnson C; Manley D; Hsu-Kim H
    Environ Sci Technol; 2015 Nov; 49(21):12897-903. PubMed ID: 26414810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury reduction and complexation by natural organic matter in anoxic environments.
    Gu B; Bian Y; Miller CL; Dong W; Jiang X; Liang L
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1479-83. PubMed ID: 21220311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The competitive role of organic carbon and dissolved sulfide in controlling the distribution of mercury in freshwater lake sediments.
    Belzile N; Lang CY; Chen YW; Wang M
    Sci Total Environ; 2008 Nov; 405(1-3):226-38. PubMed ID: 18657305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer.
    Hellal J; Guédron S; Huguet L; Schäfer J; Laperche V; Joulian C; Lanceleur L; Burnol A; Ghestem JP; Garrido F; Battaglia-Brunet F
    J Contam Hydrol; 2015 Sep; 180():56-68. PubMed ID: 26275395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uranium(VI) reduction by iron(II) monosulfide mackinawite.
    Hyun SP; Davis JA; Sun K; Hayes KF
    Environ Sci Technol; 2012 Mar; 46(6):3369-76. PubMed ID: 22316012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfide species as a sink for mercury in lake sediments.
    Wolfenden S; Charnock JM; Hilton J; Livens FR; Vaughan DJ
    Environ Sci Technol; 2005 Sep; 39(17):6644-8. PubMed ID: 16190223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of FeS on mercury behavior in mercury-contaminated stream sediment: A case study of Pohang Gumu Creek in South Korea.
    Han YS; Kim SH; Chon CM; Kwon S; Kim JG; Choi HW; Ahn JS
    J Hazard Mater; 2020 Jul; 393():122373. PubMed ID: 32126425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.