These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25180812)

  • 1. Near-field light design with colloidal quantum dots for photonics and plasmonics.
    Kress SJ; Richner P; Jayanti SV; Galliker P; Kim DK; Poulikakos D; Norris DJ
    Nano Lett; 2014 Oct; 14(10):5827-33. PubMed ID: 25180812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wedge Waveguides and Resonators for Quantum Plasmonics.
    Kress SJ; Antolinez FV; Richner P; Jayanti SV; Kim DK; Prins F; Riedinger A; Fischer MP; Meyer S; McPeak KM; Poulikakos D; Norris DJ
    Nano Lett; 2015 Sep; 15(9):6267-75. PubMed ID: 26284499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot.
    Pfeiffer M; Lindfors K; Zhang H; Fenk B; Phillipp F; Atkinson P; Rastelli A; Schmidt OG; Giessen H; Lippitz M
    Nano Lett; 2014 Jan; 14(1):197-201. PubMed ID: 24341867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale patterning of colloidal quantum dots on transparent and metallic planar surfaces.
    Park Y; Roh YG; Kim UJ; Chung DY; Suh H; Kim J; Cheon S; Lee J; Kim TH; Cho KS; Lee CW
    Nanotechnology; 2012 Sep; 23(35):355302. PubMed ID: 22895055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum Plasmonics: Energy Transport Through Plasmonic Gap.
    Lee J; Jeon DJ; Yeo JS
    Adv Mater; 2021 Nov; 33(47):e2006606. PubMed ID: 33891781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-Assisted Selective and Super-Resolving Excitation of Individual Quantum Emitters on a Metal Nanowire.
    Li Q; Pan D; Wei H; Xu H
    Nano Lett; 2018 Mar; 18(3):2009-2015. PubMed ID: 29485884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Resolution Bubble Printing of Quantum Dots.
    Bangalore Rajeeva B; Lin L; Perillo EP; Peng X; Yu WW; Dunn AK; Zheng Y
    ACS Appl Mater Interfaces; 2017 May; 9(19):16725-16733. PubMed ID: 28452214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermediate Field Coupling of Single Epitaxial Quantum Dots to Plasmonic Waveguides.
    Seidel M; Yang Y; Schumacher T; Huo Y; Covre da Silva SF; Rodt S; Rastelli A; Reitzenstein S; Lippitz M
    Nano Lett; 2023 Nov; 23(22):10532-10537. PubMed ID: 37917860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers.
    Kress SJP; Cui J; Rohner P; Kim DK; Antolinez FV; Zaininger KA; Jayanti SV; Richner P; McPeak KM; Poulikakos D; Norris DJ
    Sci Adv; 2017 Sep; 3(9):e1700688. PubMed ID: 28948219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monolithically integrated single quantum dots coupled to bowtie nanoantennas.
    Lyamkina AA; Schraml K; Regler A; Schalk M; Bakarov AK; Toropov AI; Moshchenko SP; Kaniber M
    Opt Express; 2016 Dec; 24(25):28936-28944. PubMed ID: 27958558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positioning of quantum dots on metallic nanostructures.
    Kramer RK; Pholchai N; Sorger VJ; Yim TJ; Oulton R; Zhang X
    Nanotechnology; 2010 Apr; 21(14):145307. PubMed ID: 20234079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Graphene Grain Boundaries for Plasmonic Multi-Excitation and Hotspots.
    Ma T; Yao B; Zheng Z; Liu Z; Ma W; Chen M; Chen H; Deng S; Xu N; Bao Q; Sun DM; Cheng HM; Ren W
    ACS Nano; 2022 Jun; 16(6):9041-9048. PubMed ID: 35696451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonics in atomically thin materials.
    García de Abajo FJ; Manjavacas A
    Faraday Discuss; 2015; 178():87-107. PubMed ID: 25774774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Planar Aperiodic Arrays as Metasurfaces for Optical Near-Field Patterning.
    Miscuglio M; Borys NJ; Spirito D; Martín-García B; Zaccaria RP; Weber-Bargioni A; Schuck PJ; Krahne R
    ACS Nano; 2019 May; 13(5):5646-5654. PubMed ID: 31021592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of quantum dots coupled to plasmons and optical cavities.
    Westmoreland DE; McClelland KP; Perez KA; Schwabacher JC; Zhang Z; Weiss EA
    J Chem Phys; 2019 Dec; 151(21):210901. PubMed ID: 31822081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extreme multiexciton emission from deterministically assembled single-emitter subwavelength plasmonic patch antennas.
    Dhawan AR; Belacel C; Esparza-Villa JU; Nasilowski M; Wang Z; Schwob C; Hugonin JP; Coolen L; Dubertret B; Senellart P; Maître A
    Light Sci Appl; 2020; 9():33. PubMed ID: 32194947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. “Deterministic” quantum plasmonics.
    Cuche A; Mollet O; Drezet A; Huant S
    Nano Lett; 2010 Nov; 10(11):4566-70. PubMed ID: 20964345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observing optical plasmons on a single nanometer scale.
    Cohen M; Shavit R; Zalevsky Z
    Sci Rep; 2014 Feb; 4():4096. PubMed ID: 24556874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.
    Hoang TB; Akselrod GM; Mikkelsen MH
    Nano Lett; 2016 Jan; 16(1):270-5. PubMed ID: 26606001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.