These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25180875)

  • 41. Voltage- and pH-dependent changes in vectoriality of photocurrents mediated by wild-type and mutant proteorhodopsins upon expression in Xenopus oocytes.
    Lörinczi E; Verhoefen MK; Wachtveitl J; Woerner AC; Glaubitz C; Engelhard M; Bamberg E; Friedrich T
    J Mol Biol; 2009 Oct; 393(2):320-41. PubMed ID: 19631661
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra.
    Kloppmann E; Becker T; Ullmann GM
    Proteins; 2005 Dec; 61(4):953-65. PubMed ID: 16247786
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Acid-base equilibrium of the chromophore counterion results in distinct photoisomerization reactivity in the primary event of proteorhodopsin.
    Chang CF; Kuramochi H; Singh M; Abe-Yoshizumi R; Tsukuda T; Kandori H; Tahara T
    Phys Chem Chem Phys; 2019 Nov; 21(46):25728-25734. PubMed ID: 31720623
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I.
    Rath P; Spudich E; Neal DD; Spudich JL; Rothschild KJ
    Biochemistry; 1996 May; 35(21):6690-6. PubMed ID: 8639619
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photoisomerization in proteorhodopsin mutant D97N.
    Lenz MO; Woerner AC; Glaubitz C; Wachtveitl J
    Photochem Photobiol; 2007; 83(2):226-31. PubMed ID: 16808594
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acid-base equilibria in rhodopsin: dependence of the protonation state of glu134 on its environment.
    Periole X; Ceruso MA; Mehler EL
    Biochemistry; 2004 Jun; 43(22):6858-64. PubMed ID: 15170322
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cyanobacterial light-driven proton pump, gloeobacter rhodopsin: complementarity between rhodopsin-based energy production and photosynthesis.
    Choi AR; Shi L; Brown LS; Jung KH
    PLoS One; 2014; 9(10):e110643. PubMed ID: 25347537
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of Asn112 in a Light-Driven Sodium Ion-Pumping Rhodopsin.
    Abe-Yoshizumi R; Inoue K; Kato HE; Nureki O; Kandori H
    Biochemistry; 2016 Oct; 55(41):5790-5797. PubMed ID: 27673340
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modulating rhodopsin receptor activation by altering the pKa of the retinal Schiff base.
    Vogel R; Siebert F; Yan EC; Sakmar TP; Hirshfeld A; Sheves M
    J Am Chem Soc; 2006 Aug; 128(32):10503-12. PubMed ID: 16895417
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of water on the photochemical reaction cycle of proteorhodopsin at low and high pH.
    Lakatos M; Váró G
    J Photochem Photobiol B; 2004 Feb; 73(3):177-82. PubMed ID: 14975406
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Time-resolved titrations of ASP-85 in bacteriorhodopsin: the multicomponent kinetic mechanism.
    Friedman N; Rousso I; Sheves M; Fu X; Bressler S; Druckmann S; Ottolenghi M
    Biochemistry; 1997 Sep; 36(38):11369-80. PubMed ID: 9298956
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional consequences of the oligomeric assembly of proteorhodopsin.
    Hussain S; Kinnebrew M; Schonenbach NS; Aye E; Han S
    J Mol Biol; 2015 Mar; 427(6 Pt B):1278-1290. PubMed ID: 25597999
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Folding and assembly of proteorhodopsin.
    Klyszejko AL; Shastri S; Mari SA; Grubmüller H; Muller DJ; Glaubitz C
    J Mol Biol; 2008 Feb; 376(1):35-41. PubMed ID: 18155728
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Red/Green Color Tuning of Visual Rhodopsins: Electrostatic Theory Provides a Quantitative Explanation.
    Collette F; Renger T; Müh F; Schmidt Am Busch M
    J Phys Chem B; 2018 May; 122(18):4828-4837. PubMed ID: 29652503
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Complex Photochemistry within the Green-Absorbing Channelrhodopsin ReaChR.
    Krause BS; Grimm C; Kaufmann JCD; Schneider F; Sakmar TP; Bartl FJ; Hegemann P
    Biophys J; 2017 Mar; 112(6):1166-1175. PubMed ID: 28355544
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.
    Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP
    J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative FTIR study of a new fungal rhodopsin.
    Ito H; Sumii M; Kawanabe A; Fan Y; Furutani Y; Brown LS; Kandori H
    J Phys Chem B; 2012 Oct; 116(39):11881-9. PubMed ID: 22973982
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photocycle and vectorial proton transfer in a rhodopsin from the eukaryote Oxyrrhis marina.
    Janke C; Scholz F; Becker-Baldus J; Glaubitz C; Wood PG; Bamberg E; Wachtveitl J; Bamann C
    Biochemistry; 2013 Apr; 52(16):2750-63. PubMed ID: 23586665
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Local-access model for proton transfer in bacteriorhodopsin.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biochemistry; 1998 Mar; 37(11):3982-93. PubMed ID: 9521720
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Conformation analysis of glu181 and ser186 in the metarhodopsin I state.
    Ishiguro M
    Chembiochem; 2004 Sep; 5(9):1204-9. PubMed ID: 15368571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.