These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25180875)

  • 61. Theoretical Insights into the Mechanism of Wavelength Regulation in Blue-Absorbing Proteorhodopsin.
    Lee C; Sekharan S; Mertz B
    J Phys Chem B; 2019 Dec; 123(50):10631-10641. PubMed ID: 31757123
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Low-Temperature Trapping of Photointermediates of the Rhodopsin E181Q Mutant.
    Sandberg MN; Greco JA; Wagner NL; Amora TL; Ramos LA; Chen MH; Knox BE; Birge RR
    SOJ Biochem; 2014; 1(1):. PubMed ID: 25621306
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Novel Proteorhodopsin variants from the Mediterranean and Red Seas.
    Sabehi G; Massana R; Bielawski JP; Rosenberg M; Delong EF; Béjà O
    Environ Microbiol; 2003 Oct; 5(10):842-9. PubMed ID: 14510837
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Screening and characterization of proteorhodopsin color-tuning mutations in Escherichia coli with endogenous retinal synthesis.
    Kim SY; Waschuk SA; Brown LS; Jung KH
    Biochim Biophys Acta; 2008 Jun; 1777(6):504-13. PubMed ID: 18433714
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Color-tuning of natural variants of heliorhodopsin.
    Kim SH; Chuon K; Cho SG; Choi A; Meas S; Cho HS; Jung KH
    Sci Rep; 2021 Jan; 11(1):854. PubMed ID: 33441566
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electrostatic Environment of Proteorhodopsin Affects the pKa of Its Buried Primary Proton Acceptor.
    Han CT; Song J; Chan T; Pruett C; Han S
    Biophys J; 2020 Apr; 118(8):1838-1849. PubMed ID: 32197061
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Anion binding to mutants of the Schiff base counterion in heliorhodopsin 48C12.
    Singh M; Katayama K; Béjà O; Kandori H
    Phys Chem Chem Phys; 2019 Nov; 21(42):23663-23671. PubMed ID: 31626269
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Pro219 is an electrostatic color determinant in the light-driven sodium pump KR2.
    Nakajima Y; Pedraza-González L; Barneschi L; Inoue K; Olivucci M; Kandori H
    Commun Biol; 2021 Oct; 4(1):1185. PubMed ID: 34645937
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Accurate Prediction of Absorption Spectral Shifts of Proteorhodopsin Using a Fragment-Based Quantum Mechanical Method.
    Shen C; Jin X; Glover WJ; He X
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361639
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Function and regulation of Vibrio campbellii proteorhodopsin: acquired phototrophy in a classical organoheterotroph.
    Wang Z; O'Shaughnessy TJ; Soto CM; Rahbar AM; Robertson KL; Lebedev N; Vora GJ
    PLoS One; 2012; 7(6):e38749. PubMed ID: 22741028
    [TBL] [Abstract][Full Text] [Related]  

  • 71. pH-Dependent absorption spectrum of a protein: a minimal electrostatic model of Anabaena sensory rhodopsin.
    Stenrup M; Pieri E; Ledentu V; Ferré N
    Phys Chem Chem Phys; 2017 May; 19(21):14073-14084. PubMed ID: 28518188
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Initial reaction dynamics of proteorhodopsin observed by femtosecond infrared and visible spectroscopy.
    Neumann K; Verhoefen MK; Weber I; Glaubitz C; Wachtveitl J
    Biophys J; 2008 Jun; 94(12):4796-807. PubMed ID: 18326639
    [TBL] [Abstract][Full Text] [Related]  

  • 73. NeoR, a near-infrared absorbing rhodopsin.
    Broser M; Spreen A; Konold PE; Schiewer E; Adam S; Borin V; Schapiro I; Seifert R; Kennis JTM; Bernal Sierra YA; Hegemann P
    Nat Commun; 2020 Nov; 11(1):5682. PubMed ID: 33173168
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Functional importance of the oligomer formation of the cyanobacterial H
    Iizuka A; Kajimoto K; Fujisawa T; Tsukamoto T; Aizawa T; Kamo N; Jung KH; Unno M; Demura M; Kikukawa T
    Sci Rep; 2019 Jul; 9(1):10711. PubMed ID: 31341208
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The Use of a Chimeric Rhodopsin Vector for the Detection of New Proteorhodopsins Based on Color.
    Pushkarev A; Hevroni G; Roitman S; Shim JG; Choi A; Jung KH; Béjà O
    Front Microbiol; 2018; 9():439. PubMed ID: 29593685
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Evaluation of blue and green absorbing proteorhodopsins as holographic materials.
    Xi B; Tetley WC; Marcy DL; Zhong C; Whited G; Birge RR; Stuart JA
    J Phys Chem B; 2008 Feb; 112(8):2524-32. PubMed ID: 18237161
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Engineering a Chemical Switch into the Light-driven Proton Pump Proteorhodopsin by Cysteine Mutagenesis and Thiol Modification.
    Harder D; Hirschi S; Ucurum Z; Goers R; Meier W; Müller DJ; Fotiadis D
    Angew Chem Int Ed Engl; 2016 Jul; 55(31):8846-9. PubMed ID: 27294681
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Interaction Study of Ferrocene Derivatives and Heme by UV-Vis Spectroscopy.
    Han GC; Feng XZ; Liang JT; Xiao WX; Chen ZC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1585-91. PubMed ID: 30001068
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Photopatternable electrochromic materials from oxetane precursors.
    Leliège A; Barik S; Skene WG
    ACS Appl Mater Interfaces; 2014 May; 6(9):6920-9. PubMed ID: 24720759
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Structural basis for Na(+) transport mechanism by a light-driven Na(+) pump.
    Kato HE; Inoue K; Abe-Yoshizumi R; Kato Y; Ono H; Konno M; Hososhima S; Ishizuka T; Hoque MR; Kunitomo H; Ito J; Yoshizawa S; Yamashita K; Takemoto M; Nishizawa T; Taniguchi R; Kogure K; Maturana AD; Iino Y; Yawo H; Ishitani R; Kandori H; Nureki O
    Nature; 2015 May; 521(7550):48-53. PubMed ID: 25849775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.