These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 25180887)
1. Multilaboratory study of flow-induced hemolysis using the FDA benchmark nozzle model. Herbertson LH; Olia SE; Daly A; Noatch CP; Smith WA; Kameneva MV; Malinauskas RA Artif Organs; 2015 Mar; 39(3):237-48. PubMed ID: 25180887 [TBL] [Abstract][Full Text] [Related]
2. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. Hariharan P; Giarra M; Reddy V; Day SW; Manning KB; Deutsch S; Stewart SF; Myers MR; Berman MR; Burgreen GW; Paterson EG; Malinauskas RA J Biomech Eng; 2011 Apr; 133(4):041002. PubMed ID: 21428676 [TBL] [Abstract][Full Text] [Related]
3. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV). Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585 [TBL] [Abstract][Full Text] [Related]
4. Examining the universality of the hemolysis power law model from simulations of the FDA nozzle using calibrated model coefficients. Mantegazza A; Tobin N; Manning KB; Craven BA Biomech Model Mechanobiol; 2023 Apr; 22(2):433-451. PubMed ID: 36418603 [TBL] [Abstract][Full Text] [Related]
5. Large-Eddy Simulations of Flow in the FDA Benchmark Nozzle Geometry to Predict Hemolysis. Tobin N; Manning KB Cardiovasc Eng Technol; 2020 Jun; 11(3):254-267. PubMed ID: 32297154 [TBL] [Abstract][Full Text] [Related]
6. Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry. Taylor JO; Good BC; Paterno AV; Hariharan P; Deutsch S; Malinauskas RA; Manning KB Cardiovasc Eng Technol; 2016 Sep; 7(3):191-209. PubMed ID: 27350137 [TBL] [Abstract][Full Text] [Related]
7. FDA Benchmark Medical Device Flow Models for CFD Validation. Malinauskas RA; Hariharan P; Day SW; Herbertson LH; Buesen M; Steinseifer U; Aycock KI; Good BC; Deutsch S; Manning KB; Craven BA ASAIO J; 2017; 63(2):150-160. PubMed ID: 28114192 [TBL] [Abstract][Full Text] [Related]
8. Results of the Interlaboratory Computational Fluid Dynamics Study of the FDA Benchmark Blood Pump. Ponnaluri SV; Hariharan P; Herbertson LH; Manning KB; Malinauskas RA; Craven BA Ann Biomed Eng; 2023 Jan; 51(1):253-269. PubMed ID: 36401112 [TBL] [Abstract][Full Text] [Related]
9. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump. Good BC; Manning KB Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269 [TBL] [Abstract][Full Text] [Related]
10. Flow-Field Simulations and Hemolysis Estimates for the Food and Drug Administration Critical Path Initiative Centrifugal Blood Pump. Heck ML; Yen A; Snyder TA; O'Rear EA; Papavassiliou DV Artif Organs; 2017 Oct; 41(10):E129-E140. PubMed ID: 28168706 [TBL] [Abstract][Full Text] [Related]
11. Development of the small caliber centrifugal blood pump. Miyazoe Y; Sawairi T; Ito K; Yana J Artif Organs; 1998 Jun; 22(6):461-5. PubMed ID: 9650666 [TBL] [Abstract][Full Text] [Related]
12. Testing of models of flow-induced hemolysis in blood flow through hypodermic needles. Chen Y; Kent TL; Sharp MK Artif Organs; 2013 Mar; 37(3):256-66. PubMed ID: 23419169 [TBL] [Abstract][Full Text] [Related]
13. The FDA nozzle benchmark: "In theory there is no difference between theory and practice, but in practice there is". Bergersen AW; Mortensen M; Valen-Sendstad K Int J Numer Method Biomed Eng; 2019 Jan; 35(1):e3150. PubMed ID: 30211982 [TBL] [Abstract][Full Text] [Related]
14. Large eddy simulation of the FDA benchmark nozzle for a Reynolds number of 6500. Janiga G Comput Biol Med; 2014 Apr; 47():113-9. PubMed ID: 24561349 [TBL] [Abstract][Full Text] [Related]
15. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump. Ozturk C; Aka IB; Lazoglu I Int J Artif Organs; 2018 Nov; 41(11):730-737. PubMed ID: 29998774 [TBL] [Abstract][Full Text] [Related]
16. Verification Benchmarks to Assess the Implementation of Computational Fluid Dynamics Based Hemolysis Prediction Models. Hariharan P; D'Souza G; Horner M; Malinauskas RA; Myers MR J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26065371 [TBL] [Abstract][Full Text] [Related]
17. Stochastic simulation of the FDA centrifugal blood pump benchmark. Karimi MS; Razzaghi P; Raisee M; Hendrick P; Nourbakhsh A Biomech Model Mechanobiol; 2021 Oct; 20(5):1871-1887. PubMed ID: 34191187 [TBL] [Abstract][Full Text] [Related]
18. Efficacy of the FDA nozzle benchmark and the lattice Boltzmann method for the analysis of biomedical flows in transitional regime. Jain K Med Biol Eng Comput; 2020 Aug; 58(8):1817-1830. PubMed ID: 32507933 [TBL] [Abstract][Full Text] [Related]
19. The effects of non-Newtonian blood modeling and pulsatility on hemodynamics in the food and drug administration's benchmark nozzle model. Good BC Biorheology; 2023; 59(1-2):1-18. PubMed ID: 34924367 [TBL] [Abstract][Full Text] [Related]
20. A CFD-based Kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices. Craven BA; Aycock KI; Herbertson LH; Malinauskas RA Biomech Model Mechanobiol; 2019 Aug; 18(4):1005-1030. PubMed ID: 30815758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]