BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25180916)

  • 1. Selective breakdown of metallic pathways in double-walled carbon nanotube networks.
    Ng AL; Sun Y; Powell L; Sun CF; Chen CF; Lee CS; Wang Y
    Small; 2015 Jan; 11(1):96-102. PubMed ID: 25180916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties and application of double-walled carbon nanotubes sorted by outer-wall electronic type.
    Green AA; Hersam MC
    ACS Nano; 2011 Feb; 5(2):1459-67. PubMed ID: 21280609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gel electrophoresis using a selective radical for the separation of single-walled carbon nanotubes.
    Mesgari S; Sundramoorthy AK; Loo LS; Chan-Park MB
    Faraday Discuss; 2014; 173():351-63. PubMed ID: 25319125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition of single-walled carbon nanotubes from metallic to semiconducting in field-effect transistors by hydrogen plasma treatment.
    Zheng G; Li Q; Jiang K; Zhang X; Chen J; Ren Z; Fan S
    Nano Lett; 2007 Jun; 7(6):1622-5. PubMed ID: 17508771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors.
    Li S; Liu C; Hou PX; Sun DM; Cheng HM
    ACS Nano; 2012 Nov; 6(11):9657-61. PubMed ID: 23025663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock.
    Che Y; Wang C; Liu J; Liu B; Lin X; Parker J; Beasley C; Wong HS; Zhou C
    ACS Nano; 2012 Aug; 6(8):7454-62. PubMed ID: 22849386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbene-functionalized single-walled carbon nanotubes and their electrical properties.
    Liu C; Zhang Q; Stellacci F; Marzari N; Zheng L; Zhan Z
    Small; 2011 May; 7(9):1257-63. PubMed ID: 21485006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separated metallic and semiconducting single-walled carbon nanotubes: opportunities in transparent electrodes and beyond.
    Lu F; Meziani MJ; Cao L; Sun YP
    Langmuir; 2011 Apr; 27(8):4339-50. PubMed ID: 20942475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for metal-semiconductor transitions in twisted and collapsed double-walled carbon nanotubes by scanning tunneling microscopy.
    Giusca CE; Tison Y; Silva SR
    Nano Lett; 2008 Oct; 8(10):3350-6. PubMed ID: 18783281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport spectroscopy of chemical nanostructures: the case of metallic single-walled carbon nanotubes.
    Liang W; Bockrath M; Park H
    Annu Rev Phys Chem; 2005; 56():475-90. PubMed ID: 15796708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thin film transistors using preferentially grown semiconducting single-walled carbon nanotube networks by water-assisted plasma-enhanced chemical vapor deposition.
    Kim UJ; Lee EH; Kim JM; Min YS; Kim E; Park W
    Nanotechnology; 2009 Jul; 20(29):295201. PubMed ID: 19567966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics.
    Cao Q; Han SJ; Tulevski GS; Zhu Y; Lu DD; Haensch W
    Nat Nanotechnol; 2013 Mar; 8(3):180-6. PubMed ID: 23353673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of metallic and semiconducting single-walled carbon nanotubes via covalent functionalization.
    Campidelli S; Meneghetti M; Prato M
    Small; 2007 Oct; 3(10):1672-6. PubMed ID: 17806088
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of interwall interaction on the electronic structure of double-walled carbon nanotubes.
    Soto M; Boyer TA; Biradar S; Ge L; Vajtai R; Elías-Zúñiga A; Ajayan PM; Barrera EV
    Nanotechnology; 2015 Apr; 26(16):165201. PubMed ID: 25816374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wall-selective probing of double-walled carbon nanotubes using covalent functionalization.
    Bouilly D; Cabana J; Meunier F; Desjardins-Carrière M; Lapointe F; Gagnon P; Larouche FL; Adam E; Paillet M; Martel R
    ACS Nano; 2011 Jun; 5(6):4927-34. PubMed ID: 21595426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser Lithography of a Tube-in-a-Tube Nanostructure.
    Ng AL; Piao Y; Wang Y
    ACS Nano; 2017 Mar; 11(3):3320-3327. PubMed ID: 28195694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic nanoparticle-based separation of metallic and semiconducting carbon nanotubes.
    Kim HJ; Hwang S; Oh J; Chang YW; Lim EK; Haam S; Kim CS; Yoo KH
    Nanotechnology; 2011 Jan; 22(4):045703. PubMed ID: 21169656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays.
    Engel M; Small JP; Steiner M; Freitag M; Green AA; Hersam MC; Avouris P
    ACS Nano; 2008 Dec; 2(12):2445-52. PubMed ID: 19206278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of metallic and semiconducting single-walled carbon nanotube characteristics.
    Wu B; Geng D; Liu Y
    Nanoscale; 2011 May; 3(5):2074-85. PubMed ID: 21387025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorting carbon nanotubes by electronic structure using density differentiation.
    Arnold MS; Green AA; Hulvat JF; Stupp SI; Hersam MC
    Nat Nanotechnol; 2006 Oct; 1(1):60-5. PubMed ID: 18654143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.