These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 25180943)
61. Transition states for the dimerization of 1,3-cyclohexadiene: a DFT, CASPT2, and CBS-QB3 quantum mechanical investigation. Ess DH; Hayden AE; Klärner FG; Houk KN J Org Chem; 2008 Oct; 73(19):7586-92. PubMed ID: 18763823 [TBL] [Abstract][Full Text] [Related]
62. Isomers of the uracil dimer: an ab initio benchmark study. Frey JA; Müller A; Losada M; Leutwyler S J Phys Chem B; 2007 Apr; 111(13):3534-42. PubMed ID: 17388514 [TBL] [Abstract][Full Text] [Related]
63. Thermochemistry and kinetics for 2-butanone-1-yl radical (CH2·C(═O)CH2CH3) reactions with O2. Sebbar N; Bozzelli JW; Bockhorn H J Phys Chem A; 2014 Jan; 118(1):21-37. PubMed ID: 24102500 [TBL] [Abstract][Full Text] [Related]
64. Theoretical prediction of the heats of formation of C2H5O* radicals derived from ethanol and of the kinetics of beta-C-C scission in the ethoxy radical. Matus MH; Nguyen MT; Dixon DA J Phys Chem A; 2007 Jan; 111(1):113-26. PubMed ID: 17201394 [TBL] [Abstract][Full Text] [Related]
65. Kinetics of the multichannel reaction of methanethiyl radical (CH3S*) with 3O2. Zhu L; Bozzelli JW J Phys Chem A; 2006 Jun; 110(21):6923-37. PubMed ID: 16722707 [TBL] [Abstract][Full Text] [Related]
66. Thermochemical analysis and kinetics aspects for a chemical model for camphene ozonolysis. Oliveira RC; Bauerfeldt GF J Chem Phys; 2012 Oct; 137(13):134306. PubMed ID: 23039598 [TBL] [Abstract][Full Text] [Related]
67. Group additive values for the gas phase standard enthalpy of formation of hydrocarbons and hydrocarbon radicals. Sabbe MK; Saeys M; Reyniers MF; Marin GB; Van Speybroeck V; Waroquier M J Phys Chem A; 2005 Aug; 109(33):7466-80. PubMed ID: 16834116 [TBL] [Abstract][Full Text] [Related]
68. Accuracy of calculations of heats of reduction/hydrogenation: application to some small ring systems. Wiberg KB J Org Chem; 2012 Nov; 77(22):10393-8. PubMed ID: 23077980 [TBL] [Abstract][Full Text] [Related]
69. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of nickel carbide (NiC) and its cation (NiC+). Lau KC; Chang YC; Shi X; Ng CY J Chem Phys; 2010 Sep; 133(11):114304. PubMed ID: 20866136 [TBL] [Abstract][Full Text] [Related]
70. Theoretical study of the equilibrium structure, vibrational spectrum, and thermochemistry of the peroxynitrate CF2BrCFBrOONO2. Badenes MP; Bracco LL; Cobos CJ J Phys Chem A; 2011 Jul; 115(26):7744-52. PubMed ID: 21591794 [TBL] [Abstract][Full Text] [Related]
71. Heats of formation of diphosphene, phosphinophosphinidene, diphosphine, and their methyl derivatives, and mechanism of the borane-assisted hydrogen release. Matus MH; Nguyen MT; Dixon DA J Phys Chem A; 2007 Mar; 111(9):1726-36. PubMed ID: 17298044 [TBL] [Abstract][Full Text] [Related]
72. Bond dissociation energies and radical stabilization energies associated with model peptide-backbone radicals. Wood GP; Moran D; Jacob R; Radom L J Phys Chem A; 2005 Jul; 109(28):6318-25. PubMed ID: 16833974 [TBL] [Abstract][Full Text] [Related]
73. Activation energies of pericyclic reactions: performance of DFT, MP2, and CBS-QB3 methods for the prediction of activation barriers and reaction energetics of 1,3-dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions. Ess DH; Houk KN J Phys Chem A; 2005 Oct; 109(42):9542-53. PubMed ID: 16866406 [TBL] [Abstract][Full Text] [Related]
74. Thinking out of the black box: accurate barrier heights of 1,3-dipolar cycloadditions of ozone with acetylene and ethylene. Wheeler SE; Ess DH; Houk KN J Phys Chem A; 2008 Feb; 112(8):1798-807. PubMed ID: 18247512 [TBL] [Abstract][Full Text] [Related]
75. Energetics and structure of hydroxynicotinic acids. Crystal structures of 2-, 4-, 6-hydroxynicotinic and 5-chloro-6-hydroxynicotinic acids. Santos RC; Figueira RM; Piedade MF; Diogo HP; Minas da Piedade ME J Phys Chem B; 2009 Oct; 113(43):14291-309. PubMed ID: 19785458 [TBL] [Abstract][Full Text] [Related]
76. Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry. Ruscic B J Phys Chem A; 2015 Jul; 119(28):7810-37. PubMed ID: 25760799 [TBL] [Abstract][Full Text] [Related]
77. Benchmark thermochemistry of the C(n)H(2n+2) alkane isomers (n = 2-8) and performance of DFT and composite ab initio methods for dispersion-driven isomeric equilibria. Karton A; Gruzman D; Martin JM J Phys Chem A; 2009 Jul; 113(29):8434-47. PubMed ID: 19569667 [TBL] [Abstract][Full Text] [Related]
78. Accurate and efficient method for predicting thermochemistry of furans and ortho-arynes: expansion of the bond-centered group additivity method. Yu J; Sumathi R; Green WH J Phys Chem A; 2006 Jun; 110(21):6971-7. PubMed ID: 16722711 [TBL] [Abstract][Full Text] [Related]
79. Theoretical study of the thermodynamics and kinetics of hydrogen abstractions from hydrocarbons. Vandeputte AG; Sabbe MK; Reyniers MF; Van Speybroeck V; Waroquier M; Marin GB J Phys Chem A; 2007 Nov; 111(46):11771-86. PubMed ID: 17966994 [TBL] [Abstract][Full Text] [Related]
80. Hydrogen Abstraction from Hydrocarbons by NH Siddique K; Altarawneh M; Gore J; Westmoreland PR; Dlugogorski BZ J Phys Chem A; 2017 Mar; 121(11):2221-2231. PubMed ID: 28225281 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]