BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 25181317)

  • 1. Transient hypermutagenesis accelerates the evolution of legume endosymbionts following horizontal gene transfer.
    Remigi P; Capela D; Clerissi C; Tasse L; Torchet R; Bouchez O; Batut J; Cruveiller S; Rocha EP; Masson-Boivin C
    PLoS Biol; 2014 Sep; 12(9):e1001942. PubMed ID: 25181317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallels between experimental and natural evolution of legume symbionts.
    Clerissi C; Touchon M; Capela D; Tang M; Cruveiller S; Genthon C; Lopez-Roques C; Parker MA; Moulin L; Masson-Boivin C; Rocha EPC
    Nat Commun; 2018 Jun; 9(1):2264. PubMed ID: 29891837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shaping bacterial symbiosis with legumes by experimental evolution.
    Marchetti M; Jauneau A; Capela D; Remigi P; Gris C; Batut J; Masson-Boivin C
    Mol Plant Microbe Interact; 2014 Sep; 27(9):956-64. PubMed ID: 25105803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evolution of rhizobia may lead to either extra- or intracellular symbiotic adaptation depending on the selection regime.
    Marchetti M; Clerissi C; Yousfi Y; Gris C; Bouchez O; Rocha E; Cruveiller S; Jauneau A; Capela D; Masson-Boivin C
    Mol Ecol; 2017 Apr; 26(7):1818-1831. PubMed ID: 27770459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recruitment of a Lineage-Specific Virulence Regulatory Pathway Promotes Intracellular Infection by a Plant Pathogen Experimentally Evolved into a Legume Symbiont.
    Capela D; Marchetti M; Clérissi C; Perrier A; Guetta D; Gris C; Valls M; Jauneau A; Cruveiller S; Rocha EPC; Masson-Boivin C
    Mol Biol Evol; 2017 Oct; 34(10):2503-2521. PubMed ID: 28535261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evolution of a plant pathogen into a legume symbiont.
    Marchetti M; Capela D; Glew M; Cruveiller S; Chane-Woon-Ming B; Gris C; Timmers T; Poinsot V; Gilbert LB; Heeb P; Médigue C; Batut J; Masson-Boivin C
    PLoS Biol; 2010 Jan; 8(1):e1000280. PubMed ID: 20084095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Evolution of Legume Symbionts: What Have We Learnt?
    Doin de Moura GG; Remigi P; Masson-Boivin C; Capela D
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32210028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic profiling of Burkholderia phymatum STM815, Cupriavidus taiwanensis LMG19424 and Rhizobium mesoamericanum STM3625 in response to Mimosa pudica root exudates illuminates the molecular basis of their nodulation competitiveness and symbiotic evolutionary history.
    Klonowska A; Melkonian R; Miché L; Tisseyre P; Moulin L
    BMC Genomics; 2018 Jan; 19(1):105. PubMed ID: 29378510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single sym plasmid type predominates across diverse chromosomal lineages of Cupriavidus nodule symbionts.
    Parker MA
    Syst Appl Microbiol; 2015 Sep; 38(6):417-23. PubMed ID: 26159623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of Quorum Sensing as an Adaptation to Nodule Cell Infection during Experimental Evolution of Legume Symbionts.
    Tang M; Bouchez O; Cruveiller S; Masson-Boivin C; Capela D
    mBio; 2020 Jan; 11(1):. PubMed ID: 31992622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symbiosis plasmids bring their own mutagen to the wedding party.
    Roberts RG
    PLoS Biol; 2014 Sep; 12(9):e1001943. PubMed ID: 25181446
    [No Abstract]   [Full Text] [Related]  

  • 12. Novel heavy metal resistance gene clusters are present in the genome of Cupriavidus neocaledonicus STM 6070, a new species of Mimosa pudica microsymbiont isolated from heavy-metal-rich mining site soil.
    Klonowska A; Moulin L; Ardley JK; Braun F; Gollagher MM; Zandberg JD; Marinova DV; Huntemann M; Reddy TBK; Varghese NJ; Woyke T; Ivanova N; Seshadri R; Kyrpides N; Reeve WG
    BMC Genomics; 2020 Mar; 21(1):214. PubMed ID: 32143559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia.
    Amadou C; Pascal G; Mangenot S; Glew M; Bontemps C; Capela D; Carrère S; Cruveiller S; Dossat C; Lajus A; Marchetti M; Poinsot V; Rouy Z; Servin B; Saad M; Schenowitz C; Barbe V; Batut J; Médigue C; Masson-Boivin C
    Genome Res; 2008 Sep; 18(9):1472-83. PubMed ID: 18490699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multihost experimental evolution of the pathogen Ralstonia solanacearum unveils genes involved in adaptation to plants.
    Guidot A; Jiang W; Ferdy JB; Thébaud C; Barberis P; Gouzy J; Genin S
    Mol Biol Evol; 2014 Nov; 31(11):2913-28. PubMed ID: 25086002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Cupriavidus Strains Isolated from Root Nodules of Native Uruguayan Mimosa Species.
    Platero R; James EK; Rios C; Iriarte A; Sandes L; Zabaleta M; Battistoni F; Fabiano E
    Appl Environ Microbiol; 2016 Jun; 82(11):3150-3164. PubMed ID: 26994087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts.
    Remigi P; Zhu J; Young JPW; Masson-Boivin C
    Trends Microbiol; 2016 Jan; 24(1):63-75. PubMed ID: 26612499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature.
    Chen WM; Moulin L; Bontemps C; Vandamme P; Béna G; Boivin-Masson C
    J Bacteriol; 2003 Dec; 185(24):7266-72. PubMed ID: 14645288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From β- to α-proteobacteria: the origin and evolution of rhizobial nodulation genes nodIJ.
    Aoki S; Ito M; Iwasaki W
    Mol Biol Evol; 2013 Nov; 30(11):2494-508. PubMed ID: 24030554
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Daubech B; Poinsot V; Klonowska A; Capela D; Chaintreuil C; Moulin L; Marchetti M; Masson-Boivin C
    Mol Plant Microbe Interact; 2019 Dec; 32(12):1635-1648. PubMed ID: 31617792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Horizontal gene transfer regulation in bacteria as a "spandrel" of DNA repair mechanisms.
    Fall S; Mercier A; Bertolla F; Calteau A; Gueguen L; Perrière G; Vogel TM; Simonet P
    PLoS One; 2007 Oct; 2(10):e1055. PubMed ID: 17957239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.