These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25181352)

  • 1. Transformation of vanadinite [Pb5 (VO4 )3 Cl] by fungi.
    Ceci A; Rhee YJ; Kierans M; Hillier S; Pendlowski H; Gray N; Persiani AM; Gadd GM
    Environ Microbiol; 2015 Jun; 17(6):2018-34. PubMed ID: 25181352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal Bioweathering of Mimetite and a General Geomycological Model for Lead Apatite Mineral Biotransformations.
    Ceci A; Kierans M; Hillier S; Persiani AM; Gadd GM
    Appl Environ Microbiol; 2015 Aug; 81(15):4955-64. PubMed ID: 25979898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatase-mediated bioprecipitation of lead by soil fungi.
    Liang X; Kierans M; Ceci A; Hillier S; Gadd GM
    Environ Microbiol; 2016 Jan; 18(1):219-31. PubMed ID: 26235107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colonization, penetration and transformation of manganese oxide nodules by Aspergillus niger.
    Ferrier J; Yang Y; Csetenyi L; Gadd GM
    Environ Microbiol; 2019 May; 21(5):1821-1832. PubMed ID: 30884070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and distribution of vanadinite (Pb5(V5+O4)3Cl) in lead pipe corrosion by-products.
    Gerke TL; Scheckel KG; Schock MR
    Environ Sci Technol; 2009 Jun; 43(12):4412-8. PubMed ID: 19603655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lead apatites: structural variations among Pb
    Antao SM; Dhaliwal I
    J Synchrotron Radiat; 2018 Jan; 25(Pt 1):214-221. PubMed ID: 29271770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of ivory (natural apatite): possible involvement of fungal activity in biodeterioration of the Lewis Chessmen.
    Pinzari F; Tate J; Bicchieri M; Rhee YJ; Gadd GM
    Environ Microbiol; 2013 Apr; 15(4):1050-62. PubMed ID: 23157656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lead mineral transformation by fungi.
    Sayer JA; Cotter-Howells JD; Watson C; Hillier S; Gadd GM
    Curr Biol; 1999 Jul; 9(13):691-4. PubMed ID: 10395543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lead immobilization by geological fluorapatite and fungus Aspergillus niger.
    Li Z; Wang F; Bai T; Tao J; Guo J; Yang M; Wang S; Hu S
    J Hazard Mater; 2016 Dec; 320():386-392. PubMed ID: 27585270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman and Fourier transform infrared spectroscopic study of pyromorphite-vanadinite solid solutions.
    Solecka U; Bajda T; Topolska J; Zelek-Pogudz S; Manecki M
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 190():96-103. PubMed ID: 28917163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformation of manganese oxides by fungi: solubilization and production of manganese oxalate biominerals.
    Wei Z; Hillier S; Gadd GM
    Environ Microbiol; 2012 Jul; 14(7):1744-53. PubMed ID: 22591055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solubilisation of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger.
    Sayer JA; Kierans M; Gadd GM
    FEMS Microbiol Lett; 1997 Sep; 154(1):29-35. PubMed ID: 9297818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal degradation of calcium-, lead- and silicon-bearing minerals.
    Adeyemi AO; Gadd GM
    Biometals; 2005 Jun; 18(3):269-81. PubMed ID: 15984571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus niger and Penicillium oxalicum.
    Tian D; Jiang Z; Jiang L; Su M; Feng Z; Zhang L; Wang S; Li Z; Hu S
    Environ Microbiol; 2019 Jan; 21(1):471-479. PubMed ID: 30421848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lead transformation to pyromorphite by fungi.
    Rhee YJ; Hillier S; Gadd GM
    Curr Biol; 2012 Feb; 22(3):237-41. PubMed ID: 22245002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solubilization of Pb-bearing apatite Pb
    Drewniak Ł; Skłodowska A; Manecki M; Bajda T
    Chemosphere; 2017 Mar; 171():302-307. PubMed ID: 28027474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remediation of lead-contaminated water by geological fluorapatite and fungus Penicillium oxalicum.
    Tian D; Wang W; Su M; Zheng J; Wu Y; Wang S; Li Z; Hu S
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):21118-21126. PubMed ID: 29770937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite.
    Li C; Li Q; Wang Z; Ji G; Zhao H; Gao F; Su M; Jiao J; Li Z; Li H
    Sci Rep; 2019 Oct; 9(1):15291. PubMed ID: 31653926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of phosphogypsum and phosphate-solubilizing fungi to Pb remediation: From simulation to in vivo incubation.
    Meng L; Ding K; Qiu Y; Chen Y; Huo H; Yu D; Tian D; Li Z
    Sci Total Environ; 2024 Jul; 933():173171. PubMed ID: 38740208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rock phosphate solubilization by abiotic and fungal-produced oxalic acid: reaction parameters and bioleaching potential.
    Mendes GO; Dyer T; Csetenyi L; Gadd GM
    Microb Biotechnol; 2022 Apr; 15(4):1189-1202. PubMed ID: 33710773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.