These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 25181393)
1. Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors. Jakubczyk T; Franke H; Smoleński T; Sciesiek M; Pacuski W; Golnik A; Schmidt-Grund R; Grundmann M; Kruse C; Hommel D; Kossacki P ACS Nano; 2014 Oct; 8(10):9970-8. PubMed ID: 25181393 [TBL] [Abstract][Full Text] [Related]
2. Design of Si/SiO2 micropillar cavities for Purcell-enhanced single photon emission at 1.55 μm from InAs/InP quantum dots. Song HZ; Takemoto K; Miyazawa T; Takatsu M; Iwamoto S; Yamamoto T; Arakawa Y Opt Lett; 2013 Sep; 38(17):3241-4. PubMed ID: 23988924 [TBL] [Abstract][Full Text] [Related]
3. Bright Single-Photon Source at 1.3 μm Based on InAs Bilayer Quantum Dot in Micropillar. Chen ZS; Ma B; Shang XJ; Ni HQ; Wang JL; Niu ZC Nanoscale Res Lett; 2017 Dec; 12(1):378. PubMed ID: 28571308 [TBL] [Abstract][Full Text] [Related]
4. Optical properties of red emitting self-assembled InP/(Al0.20Ga0.80)0.51In0.49P quantum dot based micropillars. Schulz WM; Thomay T; Eichfelder M; Bommer M; Wiesner M; Rossbach R; Jetter M; Bratschitsch R; Leitenstorfer A; Michler P Opt Express; 2010 Jun; 18(12):12543-51. PubMed ID: 20588380 [TBL] [Abstract][Full Text] [Related]
5. Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators. Bayer M; Reinecke TL; Weidner F; Larionov A; McDonald A; Forchel A Phys Rev Lett; 2001 Apr; 86(14):3168-71. PubMed ID: 11290134 [TBL] [Abstract][Full Text] [Related]
6. Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Ates S; Ulrich SM; Reitzenstein S; Löffler A; Forchel A; Michler P Phys Rev Lett; 2009 Oct; 103(16):167402. PubMed ID: 19905722 [TBL] [Abstract][Full Text] [Related]
7. Purcell-Enhanced and Indistinguishable Single-Photon Generation from Quantum Dots Coupled to On-Chip Integrated Ring Resonators. Dusanowski Ł; Köck D; Shin E; Kwon SH; Schneider C; Höfling S Nano Lett; 2020 Sep; 20(9):6357-6363. PubMed ID: 32706592 [TBL] [Abstract][Full Text] [Related]
8. A deterministic quantum dot micropillar single photon source with >65% extraction efficiency based on fluorescence imaging method. Liu S; Wei Y; Su R; Su R; Ma B; Chen Z; Ni H; Niu Z; Yu Y; Wei Y; Wang X; Yu S Sci Rep; 2017 Oct; 7(1):13986. PubMed ID: 29070846 [TBL] [Abstract][Full Text] [Related]
9. Bragg grating cavities embedded into nano-photonic waveguides for Purcell enhanced quantum dot emission. Hepp S; Bauer S; Hornung F; Schwartz M; Portalupi SL; Jetter M; Michler P Opt Express; 2018 Nov; 26(23):30614-30622. PubMed ID: 30469955 [TBL] [Abstract][Full Text] [Related]
10. On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. Ding X; He Y; Duan ZC; Gregersen N; Chen MC; Unsleber S; Maier S; Schneider C; Kamp M; Höfling S; Lu CY; Pan JW Phys Rev Lett; 2016 Jan; 116(2):020401. PubMed ID: 26824530 [TBL] [Abstract][Full Text] [Related]
11. Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides. Javadi A; Maibom S; Sapienza L; Thyrrestrup H; García PD; Lodahl P Opt Express; 2014 Dec; 22(25):30992-1001. PubMed ID: 25607048 [TBL] [Abstract][Full Text] [Related]
12. Deterministic generation of bright single resonance fluorescence photons from a Purcell-enhanced quantum dot-micropillar system. Unsleber S; Schneider C; Maier S; He YM; Gerhardt S; Lu CY; Pan JW; Kamp M; Höfling S Opt Express; 2015 Dec; 23(26):32977-85. PubMed ID: 26831965 [TBL] [Abstract][Full Text] [Related]
13. Cavity-enhanced coherent light scattering from a quantum dot. Bennett AJ; Lee JP; Ellis DJ; Meany T; Murray E; Floether FF; Griffths JP; Farrer I; Ritchie DA; Shields AJ Sci Adv; 2016 Apr; 2(4):e1501256. PubMed ID: 27152337 [TBL] [Abstract][Full Text] [Related]
14. A CdSe quantum dot based resonant cavity light-emitting diode showing single line emission up to 90 K. Gust A; Kruse C; Otte K; Kalden J; Meeser T; Sebald K; Gutowski J; Hommel D Nanotechnology; 2009 Jan; 20(1):015401. PubMed ID: 19417251 [TBL] [Abstract][Full Text] [Related]
15. Measurement and modification of biexciton-exciton time correlations. Huber T; Predojević A; Zoubi H; Jayakumar H; Solomon GS; Weihs G Opt Express; 2013 Apr; 21(8):9890-8. PubMed ID: 23609694 [TBL] [Abstract][Full Text] [Related]
16. Polarized emission of quantum dots in microcavity and anisotropic Purcell factors. Lee YS; Lin SD Opt Express; 2014 Jan; 22(2):1512-23. PubMed ID: 24515158 [TBL] [Abstract][Full Text] [Related]
17. Sound-based analogue of cavity quantum electrodynamics in silicon. Soykal ÖO; Ruskov R; Tahan C Phys Rev Lett; 2011 Dec; 107(23):235502. PubMed ID: 22182098 [TBL] [Abstract][Full Text] [Related]
19. High Extraction Efficiency Source of Photon Pairs Based on a Quantum Dot Embedded in a Broadband Micropillar Cavity. Ginés L; Moczała-Dusanowska M; Dlaka D; Hošák R; Gonzales-Ureta JR; Lee J; Ježek M; Harbord E; Oulton R; Höfling S; Young AB; Schneider C; Predojević A Phys Rev Lett; 2022 Jul; 129(3):033601. PubMed ID: 35905333 [TBL] [Abstract][Full Text] [Related]
20. Design and investigation of surface addressable photonic crystal cavity confined band edge modes for quantum photonic devices. Nedel P; Letartre X; Seassal C; Auffèves A; Ferrier L; Drouard E; Rahmani A; Viktorovitch P Opt Express; 2011 Mar; 19(6):5014-25. PubMed ID: 21445137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]