These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 25181405)
1. Immunohistochemical analysis of the mechanistic target of rapamycin and hypoxia signalling pathways in basal cell carcinoma and trichoepithelioma. Brinkhuizen T; Weijzen CA; Eben J; Thissen MR; van Marion AM; Lohman BG; Winnepenninckx VJ; Nelemans PJ; van Steensel MA PLoS One; 2014; 9(9):e106427. PubMed ID: 25181405 [TBL] [Abstract][Full Text] [Related]
2. Elastic fiber staining and cytokeratin 15 expression pattern in trichoepithelioma and basal cell carcinoma. Choi CW; Park HS; Kim YK; Lee SH; Cho KH J Dermatol; 2008 Aug; 35(8):499-502. PubMed ID: 18789069 [TBL] [Abstract][Full Text] [Related]
3. CD10 expression in trichoepithelioma and basal cell carcinoma. Pham TT; Selim MA; Burchette JL; Madden J; Turner J; Herman C J Cutan Pathol; 2006 Feb; 33(2):123-8. PubMed ID: 16420307 [TBL] [Abstract][Full Text] [Related]
4. Differentiation between basal cell carcinoma and trichoepithelioma by immunohistochemical staining of the androgen receptor: an overview. Arits AH; Van Marion AM; Lohman BG; Thissen MR; Steijlen PM; Nelemans PJ; Kelleners-Smeets NW Eur J Dermatol; 2011; 21(6):870-3. PubMed ID: 21865121 [TBL] [Abstract][Full Text] [Related]
5. Assessment of Mammalian Target of Rapamycin Pathway Activation in Basal Cell Carcinoma as a New Therapeutic Approach. Chang ALS; Brown R; Li S; Betancourt N; Teng J Am J Dermatopathol; 2024 Sep; 46(9):588-592. PubMed ID: 38648034 [TBL] [Abstract][Full Text] [Related]
6. Differentiation of Basal Cell Carcinoma and Trichoepithelioma: An Immunohistochemical Study. Carrasquillo OY; Cruzval-O'Reilly E; Sánchez JE; Valentín-Nogueras SM Am J Dermatopathol; 2021 Mar; 43(3):191-197. PubMed ID: 32809979 [TBL] [Abstract][Full Text] [Related]
7. Immunohistochemical evaluation of basal cell carcinoma and trichepithelioma using Bcl-2, Ki67, PCNA and P53. Abdelsayed RA; Guijarro-Rojas M; Ibrahim NA; Sangueza OP J Cutan Pathol; 2000 Apr; 27(4):169-75. PubMed ID: 10774937 [TBL] [Abstract][Full Text] [Related]
8. Hypoxia-inducible factors in mantle cell lymphoma: implication for an activated mTORC1→HIF-1α pathway. Argyriou P; Papageorgiou SG; Panteleon V; Psyrri A; Bakou V; Pappa V; Spathis A; Economopoulou P; Papageorgiou E; Economopoulos T; Rontogianni D Ann Hematol; 2011 Mar; 90(3):315-22. PubMed ID: 20838824 [TBL] [Abstract][Full Text] [Related]
9. The mTOR and PP2A Pathways Regulate PHD2 Phosphorylation to Fine-Tune HIF1α Levels and Colorectal Cancer Cell Survival under Hypoxia. Di Conza G; Trusso Cafarello S; Loroch S; Mennerich D; Deschoemaeker S; Di Matteo M; Ehling M; Gevaert K; Prenen H; Zahedi RP; Sickmann A; Kietzmann T; Moretti F; Mazzone M Cell Rep; 2017 Feb; 18(7):1699-1712. PubMed ID: 28199842 [TBL] [Abstract][Full Text] [Related]
11. Induction of chemokine receptor CXCR4 expression by transforming growth factor-β1 in human basal cell carcinoma cells. Chu CY; Sheen YS; Cha ST; Hu YF; Tan CT; Chiu HC; Chang CC; Chen MW; Kuo ML; Jee SH J Dermatol Sci; 2013 Nov; 72(2):123-33. PubMed ID: 23856244 [TBL] [Abstract][Full Text] [Related]
12. SOX9 Transcriptionally Regulates mTOR-Induced Proliferation of Basal Cell Carcinomas. Kim AL; Back JH; Chaudhary SC; Zhu Y; Athar M; Bickers DR J Invest Dermatol; 2018 Aug; 138(8):1716-1725. PubMed ID: 29550418 [TBL] [Abstract][Full Text] [Related]
13. Hypoxia-inducible factor and mammalian target of rapamycin pathway markers in urothelial carcinoma of the bladder: possible therapeutic implications. Tickoo SK; Milowsky MI; Dhar N; Dudas ME; Gallagher DJ; Al-Ahmadie H; Gopalan A; Fine SW; Ishill N; Bajorin DF; Reuter VE BJU Int; 2011 Mar; 107(5):844-849. PubMed ID: 20707797 [TBL] [Abstract][Full Text] [Related]
14. TGF-β/Smad3 activates mammalian target of rapamycin complex-1 to promote collagen production by increasing HIF-1α expression. Rozen-Zvi B; Hayashida T; Hubchak SC; Hanna C; Platanias LC; Schnaper HW Am J Physiol Renal Physiol; 2013 Aug; 305(4):F485-94. PubMed ID: 23761672 [TBL] [Abstract][Full Text] [Related]
15. Suppression of the proliferation of hypoxia-Induced retinal pigment epithelial cell by rapamycin through the /mTOR/HIF-1α/VEGF/ signaling. Liu NN; Zhao N; Cai N IUBMB Life; 2015 Jun; 67(6):446-52. PubMed ID: 25988388 [TBL] [Abstract][Full Text] [Related]
17. Rapid non-genomic signalling by 17β-oestradiol through c-Src involves mTOR-dependent expression of HIF-1α in breast cancer cells. Sudhagar S; Sathya S; Lakshmi BS Br J Cancer; 2011 Sep; 105(7):953-60. PubMed ID: 21897387 [TBL] [Abstract][Full Text] [Related]
18. Chemotherapy-mediated p53-dependent DNA damage response in clear cell renal cell carcinoma: role of the mTORC1/2 and hypoxia-inducible factor pathways. Selvarajah J; Nathawat K; Moumen A; Ashcroft M; Carroll VA Cell Death Dis; 2013 Oct; 4(10):e865. PubMed ID: 24136229 [TBL] [Abstract][Full Text] [Related]
19. miR-18a expression in basal cell carcinoma and regulatory mechanism on autophagy through mTOR pathway. Mi X; Lai K; Yan L; Xie S; Qiu X; Xiao S; Wei S Clin Exp Dermatol; 2020 Dec; 45(8):1027-1034. PubMed ID: 32485050 [TBL] [Abstract][Full Text] [Related]
20. Expression of p27kip1 in basal cell carcinomas and trichoepitheliomas. Cesinaro AM; Migaldi M; Corrado S; Maiorana A Am J Dermatopathol; 2002 Aug; 24(4):313-8. PubMed ID: 12142610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]