These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 25181520)
1. Catalytically impaired fluorescent class C β-lactamase enables rapid and sensitive cephalosporin detection by stabilizing fluorescence signals: implications for biosensor design. Tsang MW; So PK; Liu SY; Tsang CW; Chan PH; Wong KY; Leung YC Biotechnol J; 2015 Jan; 10(1):126-35. PubMed ID: 25181520 [TBL] [Abstract][Full Text] [Related]
2. A fluorescein-labeled AmpC β-lactamase allows rapid characterization of β-lactamase inhibitors by real-time fluorescence monitoring of the β-lactamase-inhibitor interactions. Tsang MW; Chan PH; Liu SY; Wong KY; Leung YC Biotechnol J; 2016 Feb; 11(2):257-65. PubMed ID: 26250526 [TBL] [Abstract][Full Text] [Related]
3. Engineered Amp C β-lactamase as a fluorescent screening tool for class C β-lactamase inhibitors. Tsang MW; Chan PH; So PK; Ma DL; Tsang CW; Wong KY; Leung YC Anal Chem; 2011 Mar; 83(6):1996-2004. PubMed ID: 21338058 [TBL] [Abstract][Full Text] [Related]
4. Rational design of a novel fluorescent biosensor for beta-lactam antibiotics from a class A beta-lactamase. Chan PH; Liu HB; Chen YW; Chan KC; Tsang CW; Leung YC; Wong KY J Am Chem Soc; 2004 Apr; 126(13):4074-5. PubMed ID: 15053574 [TBL] [Abstract][Full Text] [Related]
5. Fluorescein-labeled beta-lactamase mutant for high-throughput screening of bacterial beta-lactamases against beta-lactam antibiotics. Chan PH; Chan KC; Liu HB; Chung WH; Leung YC; Wong KY Anal Chem; 2005 Aug; 77(16):5268-76. PubMed ID: 16097768 [TBL] [Abstract][Full Text] [Related]
6. Fluorophore-labeled beta-lactamase as a biosensor for beta-lactam antibiotics: a study of the biosensing process. Chan PH; So PK; Ma DL; Zhao Y; Lai TS; Chung WH; Chan KC; Yiu KF; Chan HW; Siu FM; Tsang CW; Leung YC; Wong KY J Am Chem Soc; 2008 May; 130(20):6351-61. PubMed ID: 18429614 [TBL] [Abstract][Full Text] [Related]
7. Microbial sensor for new-generation cephalosporins based in a protein-engineered beta-lactamase. García JL; Nuñez CJ; González EG; Osuna J; Soberón X; Galindo E Appl Biochem Biotechnol; 1998; 73(2-3):243-56. PubMed ID: 9779580 [TBL] [Abstract][Full Text] [Related]
8. Increased structural flexibility at the active site of a fluorophore-conjugated beta-lactamase distinctively impacts its binding toward diverse cephalosporin antibiotics. Wong WT; Chan KC; So PK; Yap HK; Chung WH; Leung YC; Wong KY; Zhao Y J Biol Chem; 2011 Sep; 286(36):31771-80. PubMed ID: 21705325 [TBL] [Abstract][Full Text] [Related]
10. Structural studies of the mechanism for biosensing antibiotics in a fluorescein-labeled β-lactamase. Wong WT; Au HW; Yap HK; Leung YC; Wong KY; Zhao Y BMC Struct Biol; 2011 Mar; 11():15. PubMed ID: 21443768 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of turnover of cefotaxime by the Enterobacter cloacae P99 and GCl beta-lactamases: two free enzyme forms of the P99 beta-lactamase detected by a combination of pre- and post-steady state kinetics. Kumar S; Adediran SA; Nukaga M; Pratt RF Biochemistry; 2004 Mar; 43(9):2664-72. PubMed ID: 14992604 [TBL] [Abstract][Full Text] [Related]
12. Specific detection of IMP-1 β-lactamase activity using a Hu L; Liu R; Ma Z; Yu T; Li Z; Zou Y; Yuan C; Chen F; Xie H Chem Commun (Camb); 2021 Dec; 57(99):13586-13589. PubMed ID: 34847209 [TBL] [Abstract][Full Text] [Related]
13. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase. Banerjee S; Pieper U; Kapadia G; Pannell LK; Herzberg O Biochemistry; 1998 Mar; 37(10):3286-96. PubMed ID: 9521648 [TBL] [Abstract][Full Text] [Related]
14. Fluorogenic cephalosporin substrates for β-lactamase TEM-1. Rukavishnikov A; Gee KR; Johnson I; Corry S Anal Biochem; 2011 Dec; 419(1):9-16. PubMed ID: 21867672 [TBL] [Abstract][Full Text] [Related]
15. A fluorogenic substrate of beta-lactamases and its potential as a probe to detect the bacteria resistant to the third-generation oxyimino-cephalosporins. Thai HB; Yu JK; Park BS; Park YJ; Min SJ; Ahn DR Biosens Bioelectron; 2016 Mar; 77():1026-31. PubMed ID: 26547430 [TBL] [Abstract][Full Text] [Related]
16. Detection of beta-lactamase reporter gene expression by flow cytometry. Knapp T; Hare E; Feng L; Zlokarnik G; Negulescu P Cytometry A; 2003 Feb; 51(2):68-78. PubMed ID: 12541281 [TBL] [Abstract][Full Text] [Related]
17. Structural aspects for evolution of beta-lactamases from penicillin-binding proteins. Meroueh SO; Minasov G; Lee W; Shoichet BK; Mobashery S J Am Chem Soc; 2003 Aug; 125(32):9612-8. PubMed ID: 12904027 [TBL] [Abstract][Full Text] [Related]
18. Stability of TEM beta-lactamase mutants hydrolyzing third generation cephalosporins. Raquet X; Vanhove M; Lamotte-Brasseur J; Goussard S; Courvalin P; Frère JM Proteins; 1995 Sep; 23(1):63-72. PubMed ID: 8539251 [TBL] [Abstract][Full Text] [Related]
19. BADAN-conjugated β-lactamases as biosensors for β-lactam antibiotic detection. Au HW; Tsang MW; Chen YW; So PK; Wong KY; Leung YC PLoS One; 2020; 15(10):e0241594. PubMed ID: 33125437 [TBL] [Abstract][Full Text] [Related]
20. Cephalosporins determination with a novel microbial biosensor based on permeabilized Pseudomonas aeruginosa whole cells. Kumar S; Kundu S; Pakshirajan K; Dasu VV Appl Biochem Biotechnol; 2008 Dec; 151(2-3):653-64. PubMed ID: 18551255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]