These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25181637)

  • 1. First-order contaminant removal in the hyporheic zone of streams: physical insights from a simple analytical model.
    Grant SB; Stolzenbach K; Azizian M; Stewardson MJ; Boano F; Bardini L
    Environ Sci Technol; 2014 Oct; 48(19):11369-78. PubMed ID: 25181637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating emerging organic contaminant removal in an engineered hyporheic zone using high resolution mass spectrometry.
    Peter KT; Herzog S; Tian Z; Wu C; McCray JE; Lynch K; Kolodziej EP
    Water Res; 2019 Mar; 150():140-152. PubMed ID: 30508711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of simultaneous exchange of colloids and sorbing contaminants between streams and streambeds.
    Ren J; Packman AI
    Environ Sci Technol; 2004 May; 38(10):2901-11. PubMed ID: 15212266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral and longitudinal variation of hyporheic exchange in a piedmont stream pool.
    Ryan RJ; Boufadel MC
    Environ Sci Technol; 2007 Jun; 41(12):4221-6. PubMed ID: 17626416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of Engineered Streambeds for Inducing Hyporheic Transient Storage and Attenuation of Resazurin.
    Herzog SP; Higgins CP; Singha K; McCray JE
    Environ Sci Technol; 2018 Sep; 52(18):10627-10636. PubMed ID: 30095905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyporheic transverse mixing zones and dispersivity: Laboratory and numerical experiments of hydraulic controls.
    Hester ET; Santizo KY; Nida AA; Widdowson MA
    J Contam Hydrol; 2021 Dec; 243():103885. PubMed ID: 34488177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining hyporheic removal rates of trace organic compounds using non-parametric conservative transport with multiple sorption models.
    Höhne A; Lewandowski J; Schaper JL; McCallum JL
    Water Res; 2021 Nov; 206():117750. PubMed ID: 34678696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive sampling of organic contaminants across the water-sediment interface of an urban stream.
    Mechelke J; Vermeirssen ELM; Hollender J
    Water Res; 2019 Nov; 165():114966. PubMed ID: 31437634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flume experiments to investigate the environmental fate of pharmaceuticals and their transformation products in streams.
    Li Z; Sobek A; Radke M
    Environ Sci Technol; 2015 May; 49(10):6009-17. PubMed ID: 25901906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of streambed heterogeneity on hyporheic flow in gravelly rivers.
    Zhou Y; Ritzi RW; Soltanian MR; Dominic DF
    Ground Water; 2014; 52(2):206-16. PubMed ID: 23574542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining pyrosequencing and isotopic approaches to assess denitrification in a hyporheic zone.
    Kim H; Kaown D; Mayer B; Lee JY; Lee KK
    Sci Total Environ; 2018 Aug; 631-632():755-764. PubMed ID: 29544179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do thermal infrared (TIR) remote sensing and direct hyporheic measurements (DHM) similarly detect river-groundwater exchanges? Study along a 40 km-section of the Ain River (France).
    Dole-Olivier MJ; Wawzyniak V; Creuzé des Châtelliers M; Marmonier P
    Sci Total Environ; 2019 Jan; 646():1097-1110. PubMed ID: 30235596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research advances in macroinvertebrate ecology of the stream hyporheic zone].
    Zhang YW; Yuan XZ; Liu H; Ren HQ
    Ying Yong Sheng Tai Xue Bao; 2014 Nov; 25(11):3357-65. PubMed ID: 25898637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of rapidly changing river stage on uranium flux through the hyporheic zone.
    Fritz BG; Arntzen EV
    Ground Water; 2007; 45(6):753-60. PubMed ID: 17973753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convergence of Groundwater Discharge through the Hyporheic Zone of Streams.
    Mojarrad BB; Wörman A; Riml J; Xu S
    Ground Water; 2023 Jan; 61(1):66-85. PubMed ID: 35984214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empirical Equations to Predict the Characteristics of Hyporheic Exchange in a Pool-Riffle Sequence.
    Huang P; Chui TFM
    Ground Water; 2018 Nov; 56(6):947-958. PubMed ID: 29388688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical modeling of an abiotic hyporheic mixing-dependent reaction: Chemical evolution of mixing and reactant production zones.
    Santizo KY; Widdowson MA; Hester ET
    J Contam Hydrol; 2022 Dec; 251():104066. PubMed ID: 36054959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stream pollution concentration in riffle geomorphic units (Yzeron basin, France).
    Namour P; Schmitt L; Eschbach D; Moulin B; Fantino G; Bordes C; Breil P
    Sci Total Environ; 2015 Nov; 532():80-90. PubMed ID: 26057727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focused groundwater controlled feedbacks into the hyporheic zone during baseflow recession.
    Malzone JM; Lowry CS
    Ground Water; 2015; 53(2):217-26. PubMed ID: 24684212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drivers of functional diversity in the hyporheic zone of a large river.
    Dole-Olivier MJ; Creuzé des Châtelliers M; Galassi DMP; Lafont M; Mermillod-Blondin F; Paran F; Graillot D; Gaur S; Marmonier P
    Sci Total Environ; 2022 Oct; 843():156985. PubMed ID: 35772536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.