These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 25181940)
1. Stability of iron-quercetin complexes in synthetic wine under in vitro digestion conditions. Escudero LB; Fusari CM; Altamirano JC; Camargo AB; Wuilloud RG J Food Sci; 2014 Oct; 79(10):C1933-8. PubMed ID: 25181940 [TBL] [Abstract][Full Text] [Related]
2. Assessment of the Pb and Cu in vitro availability in wines by means of speciation procedures. Azenha MA; Vasconcelos MT Food Chem Toxicol; 2000 Oct; 38(10):899-912. PubMed ID: 11039324 [TBL] [Abstract][Full Text] [Related]
3. Direct HPLC analysis of quercetin and trans-resveratrol in red wine, grape, and winemaking byproducts. Careri M; Corradini C; Elviri L; Nicoletti I; Zagnoni I J Agric Food Chem; 2003 Aug; 51(18):5226-31. PubMed ID: 12926863 [TBL] [Abstract][Full Text] [Related]
4. Determination of polyphenolic compounds of red wines by UV-VIS-NIR spectroscopy and chemometrics tools. Martelo-Vidal MJ; Vázquez M Food Chem; 2014 Sep; 158():28-34. PubMed ID: 24731310 [TBL] [Abstract][Full Text] [Related]
5. Anthocyanins from red wine--their stability under simulated gastrointestinal digestion. McDougall GJ; Fyffe S; Dobson P; Stewart D Phytochemistry; 2005 Nov; 66(21):2540-8. PubMed ID: 16242736 [TBL] [Abstract][Full Text] [Related]
6. Phenolic compounds in red wine digested in vitro in the presence of iron and other dietary factors. Argyri K; Proestos C; Komaitis M; Kapsokefalou M Int J Food Sci Nutr; 2005 May; 56(3):213-22. PubMed ID: 16009636 [TBL] [Abstract][Full Text] [Related]
7. A dynamic continuous-flow dialysis system with on-line electrothermal atomic-absorption spectrometric and pH measurements for in-vitro determination of iron bioavailability by simulated gastrointestinal digestion. Promchan J; Shiowatana J Anal Bioanal Chem; 2005 Jul; 382(6):1360-7. PubMed ID: 15947915 [TBL] [Abstract][Full Text] [Related]
8. Application of tandem column solid phase extraction and flame atomic absorption spectrometry for the determination of inorganic and organically bound forms of iron in wine. Pohl P; Prusisz B Talanta; 2009 Mar; 77(5):1732-8. PubMed ID: 19159790 [TBL] [Abstract][Full Text] [Related]
9. Determination of Polyphenols in White Wines by Liquid Chromatography: Application to the Characterization of Alella (Catalonia, Spain) Wines Using Chemometric Methods. Larrauri A; Núñez O; Hernández-Cassou S; Saurina J J AOAC Int; 2017 Mar; 100(2):323-329. PubMed ID: 28054507 [TBL] [Abstract][Full Text] [Related]
10. Validation and evaluation of a high performance liquid chromatographic method for the determination of aluminium in wine. Kelly MT; Blaise A J Chromatogr A; 2006 Nov; 1134(1-2):74-80. PubMed ID: 16963061 [TBL] [Abstract][Full Text] [Related]
11. Pb and Cu speciation and bioavailability in port wine. Azenha MA; Vasconcelos MT J Agric Food Chem; 2000 Nov; 48(11):5740-9. PubMed ID: 11087548 [TBL] [Abstract][Full Text] [Related]
12. Simulated digestion and antioxidant activity of red wine fractions separated by high speed countercurrent chromatography. Noguer M; Cerezo AB; Rentzsch M; Winterhalter P; Troncoso AM; García-Parrilla MC J Agric Food Chem; 2008 Oct; 56(19):8879-84. PubMed ID: 18778068 [TBL] [Abstract][Full Text] [Related]
13. Determination of polyphenols in wines by liquid chromatography with UV spectrophotometric detection. Aznar O; Checa A; Oliver R; Hernández-Cassou S; Saurina J J Sep Sci; 2011 Mar; 34(5):527-35. PubMed ID: 21280216 [TBL] [Abstract][Full Text] [Related]
14. Analysis of non-anthocyanin phenolic compounds in wine samples using high performance liquid chromatography with ultraviolet and fluorescence detection. Rodríguez-Bernaldo de Quirós A; López-Hernández J; Ferraces-Casais P; Lage-Yusty MA J Sep Sci; 2007 Jun; 30(9):1262-6. PubMed ID: 17623466 [TBL] [Abstract][Full Text] [Related]
15. Antioxidant and antimicrobial properties of polyphenolic fractions from selected Moroccan red wines. Tenore GC; Basile A; Novellino E J Food Sci; 2011; 76(9):C1342-8. PubMed ID: 22416697 [TBL] [Abstract][Full Text] [Related]
16. Trace element determination of Argentine wines using ETAAS and USN-ICP-OES. Lara R; Cerutti S; Salonia JA; Olsina RA; Martinez LD Food Chem Toxicol; 2005 Feb; 43(2):293-7. PubMed ID: 15621342 [TBL] [Abstract][Full Text] [Related]
17. Comparison of copper and zinc in vitro bioaccessibility from cyanobacteria rich in proteins and a synthetic supplement containing gluconate complexes: LC-MS mapping of bioaccessible copper complexes. Wojcieszek J; Witkoś K; Ruzik L; Pawlak K Anal Bioanal Chem; 2016 Jan; 408(3):785-95. PubMed ID: 26597916 [TBL] [Abstract][Full Text] [Related]
18. High-throughput method based on quick, easy, cheap, effective, rugged and safe followed by liquid chromatography-multi-wavelength detection for the quantification of multiclass polyphenols in wines. Fontana AR; Bottini R J Chromatogr A; 2014 May; 1342():44-53. PubMed ID: 24704184 [TBL] [Abstract][Full Text] [Related]
19. Protective effects of Merlot red wine extract and its major polyphenols in PC12 cells under oxidative stress conditions. Martín S; González-Burgos E; Carretero ME; Gómez-Serranillos MP J Food Sci; 2013 Jan; 78(1):H112-8. PubMed ID: 23278327 [TBL] [Abstract][Full Text] [Related]
20. Heat-induced, metal-catalyzed oxidative degradation of quercetin and rutin (Quercetin 3-O-rhamnosylglucoside) in aqueous model systems. Makris DP; Rossiter JT J Agric Food Chem; 2000 Sep; 48(9):3830-8. PubMed ID: 10995278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]