BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25182340)

  • 1. Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density.
    Yu D; Goh K; Zhang Q; Wei L; Wang H; Jiang W; Chen Y
    Adv Mater; 2014 Oct; 26(39):6790-7. PubMed ID: 25182340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.
    Lv Q; Wang S; Sun H; Luo J; Xiao J; Xiao J; Xiao F; Wang S
    Nano Lett; 2016 Jan; 16(1):40-7. PubMed ID: 26599168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors.
    Jung N; Kwon S; Lee D; Yoon DM; Park YM; Benayad A; Choi JY; Park JS
    Adv Mater; 2013 Dec; 25(47):6854-8. PubMed ID: 24105733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage.
    Yu D; Goh K; Wang H; Wei L; Jiang W; Zhang Q; Dai L; Chen Y
    Nat Nanotechnol; 2014 Jul; 9(7):555-62. PubMed ID: 24813695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode.
    Zhu G; He Z; Chen J; Zhao J; Feng X; Ma Y; Fan Q; Wang L; Huang W
    Nanoscale; 2014 Jan; 6(2):1079-85. PubMed ID: 24296659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode.
    Lei Z; Shi F; Lu L
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):1058-64. PubMed ID: 22264121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
    Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC
    Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene oxide-dispersed pristine CNTs support for MnO2 nanorods as high performance supercapacitor electrodes.
    You B; Li N; Zhu H; Zhu X; Yang J
    ChemSusChem; 2013 Mar; 6(3):474-80. PubMed ID: 23417925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric Supercapacitors Based on Reduced Graphene Oxide with Different Polyoxometalates as Positive and Negative Electrodes.
    Dubal DP; Chodankar NR; Vinu A; Kim DH; Gomez-Romero P
    ChemSusChem; 2017 Jul; 10(13):2742-2750. PubMed ID: 28523755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Synthesis of Na-Doped MnO
    Zong Q; Zhang Q; Mei X; Li Q; Zhou Z; Li D; Chen M; Shi F; Sun J; Yao Y; Zhang Z
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37233-37241. PubMed ID: 30299935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes.
    Shen J; Yang C; Li X; Wang G
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8467-76. PubMed ID: 23931572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-assisted assembly of carbon nanotubes and MnO2 nanospheres as electrodes for high-performance asymmetric supercapacitors.
    Guo CX; Chitre AA; Lu X
    Phys Chem Chem Phys; 2014 Mar; 16(10):4672-8. PubMed ID: 24469241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stacked multilayers of alternating reduced graphene oxide and carbon nanotubes for planar supercapacitors.
    Moon GD; Joo JB; Yin Y
    Nanoscale; 2013 Dec; 5(23):11577-81. PubMed ID: 24114351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.
    Cheng Y; Zhang H; Lu S; Varanasi CV; Liu J
    Nanoscale; 2013 Feb; 5(3):1067-73. PubMed ID: 23254316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Zinc-Ion Hybrid Fiber Capacitors with Ultrahigh Energy Density and Long Cycling Life for Wearable Electronics.
    Zhang X; Pei Z; Wang C; Yuan Z; Wei L; Pan Y; Mahmood A; Shao Q; Chen Y
    Small; 2019 Nov; 15(47):e1903817. PubMed ID: 31609075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freestanding Gold/Graphene-Oxide/Manganese Oxide Microsupercapacitor Displaying High Areal Energy Density.
    Morag A; Becker JY; Jelinek R
    ChemSusChem; 2017 Jul; 10(13):2736-2741. PubMed ID: 28474863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-walled carbon nanotube based coating modified with reduced graphene oxide for the design of amperometric biosensors.
    Barkauskas J; Mikoliunaite L; Paklonskaite I; Genys P; Petroniene JJ; Morkvenaite-Vilkonciene I; Ramanaviciene A; Samukaite-Bubniene U; Ramanavicius A
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():515-523. PubMed ID: 30813053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO
    Wang J; Dong L; Xu C; Ren D; Ma X; Kang F
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10851-10859. PubMed ID: 29528208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide as a multi-functional p-dopant of transparent single-walled carbon nanotube films for optoelectronic devices.
    Han JT; Kim JS; Jo SB; Kim SH; Kim JS; Kang B; Jeong HJ; Jeong SY; Lee GW; Cho K
    Nanoscale; 2012 Dec; 4(24):7735-42. PubMed ID: 23135484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroactive Ultra-Thin rGO-Enriched FeMoO
    Ranjith KS; Raju GSR; Chodankar NR; Ghoreishian SM; Kwak CH; Huh YS; Han YK
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32050408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.