BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 25182497)

  • 1. The cysteine desulfhydrase CdsH is conditionally required for sulfur mobilization to the thiamine thiazole in Salmonella enterica.
    Palmer LD; Leung MH; Downs DM
    J Bacteriol; 2014 Nov; 196(22):3964-70. PubMed ID: 25182497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rhodanese domain of ThiI is both necessary and sufficient for synthesis of the thiazole moiety of thiamine in Salmonella enterica.
    Martinez-Gomez NC; Palmer LD; Vivas E; Roach PL; Downs DM
    J Bacteriol; 2011 Sep; 193(18):4582-7. PubMed ID: 21724998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate.
    Palenchar PM; Buck CJ; Cheng H; Larson TJ; Mueller EG
    J Biol Chem; 2000 Mar; 275(12):8283-6. PubMed ID: 10722656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the cysteine residues of ThiI in the generation of 4-thiouridine in tRNA.
    Mueller EG; Palenchar PM; Buck CJ
    J Biol Chem; 2001 Sep; 276(36):33588-95. PubMed ID: 11443125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cysteine catabolism and cysteine desulfhydrase (CdsH/STM0458) in Salmonella enterica serovar typhimurium.
    Oguri T; Schneider B; Reitzer L
    J Bacteriol; 2012 Aug; 194(16):4366-76. PubMed ID: 22685283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Analysis of Bacillus subtilis Genes Involved in the Biosynthesis of 4-Thiouridine in tRNA.
    Rajakovich LJ; Tomlinson J; Dos Santos PC
    J Bacteriol; 2012 Sep; 194(18):4933-40. PubMed ID: 22773787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the transfer of sulfane sulfur from IscS to ThiI during the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA.
    Kambampati R; Lauhon CT
    J Biol Chem; 2000 Apr; 275(15):10727-30. PubMed ID: 10753862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of 4-thiouridine in tRNA in the methanogenic archaeon Methanococcus maripaludis.
    Liu Y; Zhu X; Nakamura A; Orlando R; Söll D; Whitman WB
    J Biol Chem; 2012 Oct; 287(44):36683-92. PubMed ID: 22904325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic Cysteine Degradation and Potential Metabolic Coordination in Salmonella enterica and Escherichia coli.
    Loddeke M; Schneider B; Oguri T; Mehta I; Xuan Z; Reitzer L
    J Bacteriol; 2017 Aug; 199(16):. PubMed ID: 28607157
    [No Abstract]   [Full Text] [Related]  

  • 10. Thiamin biosynthesis in Escherichia coli. Identification of ThiS thiocarboxylate as the immediate sulfur donor in the thiazole formation.
    Taylor SV; Kelleher NL; Kinsland C; Chiu HJ; Costello CA; Backstrom AD; McLafferty FW; Begley TP
    J Biol Chem; 1998 Jun; 273(26):16555-60. PubMed ID: 9632726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The iscS gene in Escherichia coli is required for the biosynthesis of 4-thiouridine, thiamin, and NAD.
    Lauhon CT; Kambampati R
    J Biol Chem; 2000 Jun; 275(26):20096-103. PubMed ID: 10781607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lesions in gshA (Encoding gamma-L-glutamyl-L-cysteine synthetase) prevent aerobic synthesis of thiamine in Salmonella enterica serovar typhimurium LT2.
    Gralnick J; Webb E; Beck B; Downs D
    J Bacteriol; 2000 Sep; 182(18):5180-7. PubMed ID: 10960103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aminoimidazole Carboxamide Ribotide Exerts Opposing Effects on Thiamine Synthesis in Salmonella enterica.
    Bazurto JV; Heitman NJ; Downs DM
    J Bacteriol; 2015 Sep; 197(17):2821-30. PubMed ID: 26100042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic flux in both the purine mononucleotide and histidine biosynthetic pathways can influence synthesis of the hydroxymethyl pyrimidine moiety of thiamine in Salmonella enterica.
    Allen S; Zilles JL; Downs DM
    J Bacteriol; 2002 Nov; 184(22):6130-7. PubMed ID: 12399482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the Escherichia coli ThiS-ThiF complex, a key component of the sulfur transfer system in thiamin biosynthesis.
    Lehmann C; Begley TP; Ealick SE
    Biochemistry; 2006 Jan; 45(1):11-9. PubMed ID: 16388576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous synthesis of 2-aminoacrylate contributes to cysteine sensitivity in Salmonella enterica.
    Ernst DC; Lambrecht JA; Schomer RA; Downs DM
    J Bacteriol; 2014 Sep; 196(18):3335-42. PubMed ID: 25002544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origin of the sulfur atom in thiamine.
    Bellion E; Kirkley DH
    Biochim Biophys Acta; 1977 Mar; 497(1):323-8. PubMed ID: 321036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ydjN encodes an S-sulfocysteine transporter required by Escherichia coli for growth on S-sulfocysteine as a sulfur source.
    Yamazaki S; Takei K; Nonaka G
    FEMS Microbiol Lett; 2016 Sep; 363(17):. PubMed ID: 27481704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the sulfur-regulated control of the cystathionine γ-lyase gene of Neurospora crassa.
    Reveal BS; Paietta JV
    BMC Res Notes; 2012 Jul; 5():339. PubMed ID: 22748183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiamine biosynthesis in Escherichia coli: in vitro reconstitution of the thiazole synthase activity.
    Leonardi R; Roach PL
    J Biol Chem; 2004 Apr; 279(17):17054-62. PubMed ID: 14757766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.