These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 25182746)

  • 21. Altered cerebral vascular volumes and solute transport at the blood-brain barriers of two transgenic mouse models of Alzheimer's disease.
    Do TM; Alata W; Dodacki A; Traversy MT; Chacun H; Pradier L; Scherrmann JM; Farinotti R; Calon F; Bourasset F
    Neuropharmacology; 2014 Jun; 81():311-7. PubMed ID: 24631967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age-related changes in mitochondrial membrane composition of rainbow trout (Oncorhynchus mykiss) heart and brain.
    Almaida-Pagán PF; de Costa J; Mendiola P; Tocher DR
    Comp Biochem Physiol B Biochem Mol Biol; 2012 Sep; 163(1):129-37. PubMed ID: 22634369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Age-Dependent Decline in Synaptic Mitochondrial Function Is Exacerbated in Vulnerable Brain Regions of Female 3xTg-AD Mice.
    Espino de la Fuente-Muñoz C; Rosas-Lemus M; Moreno-Castilla P; Bermúdez-Rattoni F; Uribe-Carvajal S; Arias C
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33227902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High dietary consumption of trans fatty acids decreases brain docosahexaenoic acid but does not alter amyloid-beta and tau pathologies in the 3xTg-AD model of Alzheimer's disease.
    Phivilay A; Julien C; Tremblay C; Berthiaume L; Julien P; Giguère Y; Calon F
    Neuroscience; 2009 Mar; 159(1):296-307. PubMed ID: 19135506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diminished O-GlcNAcylation in Alzheimer's disease is strongly correlated with mitochondrial anomalies.
    Pinho TS; Correia SC; Perry G; Ambrósio AF; Moreira PI
    Biochim Biophys Acta Mol Basis Dis; 2019 Aug; 1865(8):2048-2059. PubMed ID: 30412792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting synaptic dysfunction in Alzheimer's disease by administering a specific nutrient combination.
    van Wijk N; Broersen LM; de Wilde MC; Hageman RJ; Groenendijk M; Sijben JW; Kamphuis PJ
    J Alzheimers Dis; 2014; 38(3):459-79. PubMed ID: 23985420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergistic exacerbation of mitochondrial and synaptic dysfunction and resultant learning and memory deficit in a mouse model of diabetic Alzheimer's disease.
    Wang Y; Wu L; Li J; Fang D; Zhong C; Chen JX; Yan SS
    J Alzheimers Dis; 2015; 43(2):451-63. PubMed ID: 25096625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intranasal insulin restores insulin signaling, increases synaptic proteins, and reduces Aβ level and microglia activation in the brains of 3xTg-AD mice.
    Chen Y; Zhao Y; Dai CL; Liang Z; Run X; Iqbal K; Liu F; Gong CX
    Exp Neurol; 2014 Nov; 261():610-9. PubMed ID: 24918340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Melatonin treatment restores mitochondrial function in Alzheimer's mice: a mitochondrial protective role of melatonin membrane receptor signaling.
    Dragicevic N; Copes N; O'Neal-Moffitt G; Jin J; Buzzeo R; Mamcarz M; Tan J; Cao C; Olcese JM; Arendash GW; Bradshaw PC
    J Pineal Res; 2011 Aug; 51(1):75-86. PubMed ID: 21355879
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of synaptic dysfunction in Alzheimer's disease.
    Masliah E
    Histol Histopathol; 1995 Apr; 10(2):509-19. PubMed ID: 7599445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synaptosomal bioenergetic defects are associated with cognitive impairment in a transgenic rat model of early Alzheimer's disease.
    Martino Adami PV; Quijano C; Magnani N; Galeano P; Evelson P; Cassina A; Do Carmo S; Leal MC; Castaño EM; Cuello AC; Morelli L
    J Cereb Blood Flow Metab; 2017 Jan; 37(1):69-84. PubMed ID: 26661224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of the superoxide dismutase/catalase mimetic EUK-207 in a mouse model of Alzheimer's disease: protection against and interruption of progression of amyloid and tau pathology and cognitive decline.
    Clausen A; Xu X; Bi X; Baudry M
    J Alzheimers Dis; 2012; 30(1):183-208. PubMed ID: 22406441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional role of cardiolipin in mitochondrial bioenergetics.
    Paradies G; Paradies V; De Benedictis V; Ruggiero FM; Petrosillo G
    Biochim Biophys Acta; 2014 Apr; 1837(4):408-17. PubMed ID: 24183692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Age-related changes in mitochondrial membrane composition of Nothobranchius rachovii.
    Lucas-Sánchez A; Almaida-Pagán PF; Tocher DR; Mendiola P; de Costa J
    J Gerontol A Biol Sci Med Sci; 2014 Feb; 69(2):142-51. PubMed ID: 23685767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tetra-linoleoyl cardiolipin depletion plays a major role in the pathogenesis of sarcopenia.
    Semba RD; Moaddel R; Zhang P; Ramsden CE; Ferrucci L
    Med Hypotheses; 2019 Jun; 127():142-149. PubMed ID: 31088638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial Aspects of Synaptic Dysfunction in Alzheimer's Disease.
    Cai Q; Tammineni P
    J Alzheimers Dis; 2017; 57(4):1087-1103. PubMed ID: 27767992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Melatonin prevents age-related mitochondrial dysfunction in rat brain via cardiolipin protection.
    Petrosillo G; Fattoretti P; Matera M; Ruggiero FM; Bertoni-Freddari C; Paradies G
    Rejuvenation Res; 2008 Oct; 11(5):935-43. PubMed ID: 18928424
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term electromagnetic field treatment enhances brain mitochondrial function of both Alzheimer's transgenic mice and normal mice: a mechanism for electromagnetic field-induced cognitive benefit?
    Dragicevic N; Bradshaw PC; Mamcarz M; Lin X; Wang L; Cao C; Arendash GW
    Neuroscience; 2011 Jun; 185():135-49. PubMed ID: 21514369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hormone deprivation alters mitochondrial function and lipid profile in the hippocampus.
    Zárate S; Astiz M; Magnani N; Imsen M; Merino F; Álvarez S; Reinés A; Seilicovich A
    J Endocrinol; 2017 Apr; 233(1):1-14. PubMed ID: 28130408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facilitation of brain mitochondrial activity by 5-aminolevulinic acid in a mouse model of Alzheimer's disease.
    Omori C; Motodate R; Shiraki Y; Chiba K; Sobu Y; Kimura A; Nakaya T; Kondo H; Kurumiya S; Tanaka T; Yamamoto K; Nakajima M; Suzuki T; Hata S
    Nutr Neurosci; 2017 Nov; 20(9):538-546. PubMed ID: 27329428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.