BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25183200)

  • 1. Temporal delimitation of the healing phases via monitoring of fracture callus stiffness in rats.
    Wehner T; Gruchenberg K; Bindl R; Recknagel S; Steiner M; Ignatius A; Claes L
    J Orthop Res; 2014 Dec; 32(12):1589-95. PubMed ID: 25183200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing.
    Bartnikowski N; Claes LE; Koval L; Glatt V; Bindl R; Steck R; Ignatius A; Schuetz MA; Epari DR
    Acta Orthop; 2017 Apr; 88(2):217-222. PubMed ID: 27841708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study.
    Wehner T; Steiner M; Ignatius A; Claes L
    PLoS One; 2014; 9(12):e115695. PubMed ID: 25532060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influences of age and mechanical stability on volume, microstructure, and mineralization of the fracture callus during bone healing: is osteoclast activity the key to age-related impaired healing?
    Mehta M; Strube P; Peters A; Perka C; Hutmacher D; Fratzl P; Duda GN
    Bone; 2010 Aug; 47(2):219-28. PubMed ID: 20510391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of flexible nailing in the later phase of fracture healing: strength and mineralization in rat femora.
    Utvåg SE; Korsnes L; Rindal DB; Reikerås O
    J Orthop Sci; 2001; 6(6):576-84. PubMed ID: 11793182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characterization of external fixator stiffness for a rat femoral fracture model.
    Willie B; Adkins K; Zheng X; Simon U; Claes L
    J Orthop Res; 2009 May; 27(5):687-93. PubMed ID: 18985701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early dynamization by reduced fixation stiffness does not improve fracture healing in a rat femoral osteotomy model.
    Claes L; Blakytny R; Göckelmann M; Schoen M; Ignatius A; Willie B
    J Orthop Res; 2009 Jan; 27(1):22-7. PubMed ID: 18634011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stiffness measurement of the neocallus with the Fraktometer FM 100.
    Schmickal T; von Recum J; Wentzensen A
    Arch Orthop Trauma Surg; 2005 Dec; 125(10):653-9. PubMed ID: 16189688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The initial phase of fracture healing is specifically sensitive to mechanical conditions.
    Klein P; Schell H; Streitparth F; Heller M; Kassi JP; Kandziora F; Bragulla H; Haas NP; Duda GN
    J Orthop Res; 2003 Jul; 21(4):662-9. PubMed ID: 12798066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vivo Mechanical Characterization of the Distraction Callus During Bone Consolidation.
    Mora-Macías J; Reina-Romo E; López-Pliego M; Giráldez-Sánchez MA; Domínguez J
    Ann Biomed Eng; 2015 Nov; 43(11):2663-74. PubMed ID: 25956927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A case for optimising fracture healing through inverse dynamization.
    Epari DR; Wehner T; Ignatius A; Schuetz MA; Claes LE
    Med Hypotheses; 2013 Aug; 81(2):225-7. PubMed ID: 23688741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The early healing of tibial osteotomies stabilized by one-plane or two-plane external fixation.
    Williams EA; Rand JA; An KN; Chao EY; Kelly PJ
    J Bone Joint Surg Am; 1987 Mar; 69(3):355-65. PubMed ID: 3818701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 3D computational simulation of fracture callus formation: influence of the stiffness of the external fixator.
    Gómez-Benito MJ; García-Aznar JM; Kuiper JH; Doblaré M
    J Biomech Eng; 2006 Jun; 128(3):290-9. PubMed ID: 16706578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Late dynamization by reduced fixation stiffness enhances fracture healing in a rat femoral osteotomy model.
    Claes L; Blakytny R; Besse J; Bausewein C; Ignatius A; Willie B
    J Orthop Trauma; 2011 Mar; 25(3):169-74. PubMed ID: 21321508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The course of bone healing is influenced by the initial shear fixation stability.
    Schell H; Epari DR; Kassi JP; Bragulla H; Bail HJ; Duda GN
    J Orthop Res; 2005 Sep; 23(5):1022-8. PubMed ID: 15878254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain rate and timing of stimulation in mechanical modulation of fracture healing.
    Goodship AE; Cunningham JL; Kenwright J
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S105-15. PubMed ID: 9917631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure, oxygen tension and temperature in the periosteal callus during bone healing--an in vivo study in sheep.
    Epari DR; Lienau J; Schell H; Witt F; Duda GN
    Bone; 2008 Oct; 43(4):734-9. PubMed ID: 18634913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instability prolongs the chondral phase during bone healing in sheep.
    Epari DR; Schell H; Bail HJ; Duda GN
    Bone; 2006 Jun; 38(6):864-70. PubMed ID: 16359937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of internal fixator stiffness on murine fracture healing: two types of fracture healing lead to two distinct cellular events and FGF-2 expressions.
    Ueno M; Urabe K; Naruse K; Uchida K; Minehara H; Yamamoto T; Steck R; Gregory L; Wullschleger ME; Schuetz MA; Itoman M
    Exp Anim; 2011; 60(1):79-87. PubMed ID: 21325755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for intramembranous ossification during fracture healing.
    Thompson Z; Miclau T; Hu D; Helms JA
    J Orthop Res; 2002 Sep; 20(5):1091-8. PubMed ID: 12382977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.