These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 25183286)
21. A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries. He M; Yuan L; Hu X; Zhang W; Shu J; Huang Y Nanoscale; 2013 Apr; 5(8):3298-305. PubMed ID: 23483088 [TBL] [Abstract][Full Text] [Related]
22. Excellent electrochemical properties of yolk-shell MoO₃ microspheres formed by combustion of molybdenum oxide-carbon composite microspheres. Ko YN; Park SB; Kang YC Chem Asian J; 2014 Apr; 9(4):1011-5. PubMed ID: 24519906 [TBL] [Abstract][Full Text] [Related]
23. High electrochemical performance of monodisperse NiCo₂O₂ mesoporous microspheres as an anode material for Li-ion batteries. Li J; Xiong S; Liu Y; Ju Z; Qian Y ACS Appl Mater Interfaces; 2013 Feb; 5(3):981-8. PubMed ID: 23323836 [TBL] [Abstract][Full Text] [Related]
24. Superior Na-ion storage properties of high aspect ratio SnSe nanoplates prepared by a spray pyrolysis process. Park GD; Lee JH; Kang YC Nanoscale; 2016 Jun; 8(23):11889-96. PubMed ID: 27240748 [TBL] [Abstract][Full Text] [Related]
25. Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb. He M; Walter M; Kravchyk KV; Erni R; Widmer R; Kovalenko MV Nanoscale; 2015 Jan; 7(2):455-9. PubMed ID: 25429402 [TBL] [Abstract][Full Text] [Related]
26. Encapsulation of α-Fe2O3 nanoparticles in graphitic carbon microspheres as high-performance anode materials for lithium-ion batteries. Zhang H; Sun X; Huang X; Zhou L Nanoscale; 2015 Feb; 7(7):3270-5. PubMed ID: 25619556 [TBL] [Abstract][Full Text] [Related]
27. Facile synthesis of transition-metal oxide nanocrystals embedded in hollow carbon microspheres for high-rate lithium-ion-battery anodes. Liu J; Liu W; Chen K; Ji S; Zhou Y; Wan Y; Xue D; Hodgson P; Li Y Chemistry; 2013 Jul; 19(30):9811-6. PubMed ID: 23788047 [TBL] [Abstract][Full Text] [Related]
28. Flame spray pyrolysis for finding multicomponent nanomaterials with superior electrochemical properties in the CoO(x)-FeO(x) system for use in lithium-ion batteries. Kim JH; Lee JH; Kang YC Chem Asian J; 2014 Oct; 9(10):2826-30. PubMed ID: 25065898 [TBL] [Abstract][Full Text] [Related]
29. Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries. Liu J; Song K; Zhu C; Chen CC; van Aken PA; Maier J; Yu Y ACS Nano; 2014 Jul; 8(7):7051-9. PubMed ID: 24940842 [TBL] [Abstract][Full Text] [Related]
30. Electrochemical properties of VPO4/C nanosheets and microspheres as anode materials for lithium-ion batteries. Zheng JC; Han YD; Zhang B; Shen C; Ming L; Ou X; Zhang JF ACS Appl Mater Interfaces; 2014 May; 6(9):6223-6. PubMed ID: 24754977 [TBL] [Abstract][Full Text] [Related]
31. Morphology-dependent Li storage performance of ordered mesoporous carbon as anode material. Kim MS; Bhattacharjya D; Fang B; Yang DS; Bae TS; Yu JS Langmuir; 2013 Jun; 29(22):6754-61. PubMed ID: 23688326 [TBL] [Abstract][Full Text] [Related]
32. Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries. Chen Y; Zeng S; Qian J; Wang Y; Cao Y; Yang H; Ai X ACS Appl Mater Interfaces; 2014 Mar; 6(5):3508-12. PubMed ID: 24467155 [TBL] [Abstract][Full Text] [Related]
33. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries. Hu M; Jiang Y; Sun W; Wang H; Jin C; Yan M ACS Appl Mater Interfaces; 2014 Nov; 6(21):19449-55. PubMed ID: 25329758 [TBL] [Abstract][Full Text] [Related]
34. In situ growth of MOFs on the surface of si nanoparticles for highly efficient lithium storage: Si@MOF nanocomposites as anode materials for lithium-ion batteries. Han Y; Qi P; Feng X; Li S; Fu X; Li H; Chen Y; Zhou J; Li X; Wang B ACS Appl Mater Interfaces; 2015 Feb; 7(4):2178-82. PubMed ID: 25574972 [TBL] [Abstract][Full Text] [Related]
35. Superior supercapacitor properties of composite powders with amorphous NiO nanoclusters distributed uniformly in an amorphous carbon matrix. Choi SH; Kang YC; Choi YJ; Kim YS Chem Asian J; 2014 Sep; 9(9):2453-7. PubMed ID: 24962814 [TBL] [Abstract][Full Text] [Related]
36. High electrochemical performances of microsphere C-TiO₂ anode for sodium-ion battery. Oh SM; Hwang JY; Yoon CS; Lu J; Amine K; Belharouak I; Sun YK ACS Appl Mater Interfaces; 2014 Jul; 6(14):11295-301. PubMed ID: 24950122 [TBL] [Abstract][Full Text] [Related]
37. Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries. bai Z; Ju Z; Guo C; Qian Y; Tang B; Xiong S Nanoscale; 2014 Mar; 6(6):3268-73. PubMed ID: 24509514 [TBL] [Abstract][Full Text] [Related]
38. Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries. Zheng F; He M; Yang Y; Chen Q Nanoscale; 2015 Feb; 7(8):3410-7. PubMed ID: 25631451 [TBL] [Abstract][Full Text] [Related]
39. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries. Zhou L; Wu HB; Wang Z; Lou XW ACS Appl Mater Interfaces; 2011 Dec; 3(12):4853-7. PubMed ID: 22077330 [TBL] [Abstract][Full Text] [Related]
40. Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries. Shen X; Mu D; Chen S; Wu B; Wu F ACS Appl Mater Interfaces; 2013 Apr; 5(8):3118-25. PubMed ID: 23532681 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]