These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2518373)

  • 1. Detoxification of cadmium. Ultrastructural study and electron-probe microanalysis of the midgut in a cadmium-resistant strain of Drosophila melanogaster.
    Lauverjat S; Ballan-Dufrancais C; Wegnez M
    Biol Met; 1989; 2(2):97-107. PubMed ID: 2518373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A family knockout of all four Drosophila metallothioneins reveals a central role in copper homeostasis and detoxification.
    Egli D; Yepiskoposyan H; Selvaraj A; Balamurugan K; Rajaram R; Simons A; Multhaup G; Mettler S; Vardanyan A; Georgiev O; Schaffner W
    Mol Cell Biol; 2006 Mar; 26(6):2286-96. PubMed ID: 16508004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined histochemical and x-ray microanalytical studies on the copper-accumulating granules in the mid-gut of larval Drosophila.
    Tapp RL; Hockaday A
    J Cell Sci; 1977 Aug; 26():201-15. PubMed ID: 411798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The four members of the Drosophila metallothionein family exhibit distinct yet overlapping roles in heavy metal homeostasis and detoxification.
    Egli D; Domènech J; Selvaraj A; Balamurugan K; Hua H; Capdevila M; Georgiev O; Schaffner W; Atrian S
    Genes Cells; 2006 Jun; 11(6):647-58. PubMed ID: 16716195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased accumulation of cadmium in Drosophila selected for resistance suggests a mechanism independent of metallothionein.
    Nguyen AH; Altomare LE; McElwain MC
    Biol Trace Elem Res; 2014 Aug; 160(2):245-9. PubMed ID: 24929542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Role of lysosomes in the phenomenon of cadmium concentration. Microanalysis by X-ray spectrography].
    Chassard-Bouchaud C
    C R Seances Acad Sci III; 1981 Oct; 293(5):261-5. PubMed ID: 6796209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of metallothionein genes during the post-embryonic development of Drosophila melanogaster.
    Durliat M; Bonneton F; Boissonneau E; André M; Wegnez M
    Biometals; 1995 Oct; 8(4):339-51. PubMed ID: 7580054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of heavy metals on Drosophila larvae and a metallothionein cDNA.
    Maroni G; Lastowski-Perry D; Otto E; Watson D
    Environ Health Perspect; 1986 Mar; 65():107-16. PubMed ID: 3086075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut.
    Shanbhag S; Tripathi S
    J Exp Biol; 2009 Jun; 212(Pt 11):1731-44. PubMed ID: 19448082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. More Drosophila enteroendocrine peptides: Orcokinin B and the CCHamides 1 and 2.
    Veenstra JA; Ida T
    Cell Tissue Res; 2014 Sep; 357(3):607-21. PubMed ID: 24850274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium resistance in Drosophila: a small cadmium binding substance.
    Jacobson KB; Williams MW; Richter LJ; Holt SE; Hook GJ; Knoop SM; Sloop FV; Faust JB
    Experientia Suppl; 1987; 52():293-300. PubMed ID: 2959519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amount and metal composition of midgut gland metallothionein in shore crabs (Carcinus maenas) after exposure to cadmium in the food.
    Pedersen KL; Bach LT; Bjerregaard P
    Aquat Toxicol; 2014 May; 150():182-8. PubMed ID: 24685622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury and cadmium trigger expression of the copper importer Ctr1B, which enables Drosophila to thrive on heavy metal-loaded food.
    Balamurugan K; Hua H; Georgiev O; Schaffner W
    Biol Chem; 2009 Feb; 390(2):109-13. PubMed ID: 19040355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium detoxification in earthworms: from genes to cells.
    Stürzenbaum SR; Georgiev O; Morgan AJ; Kille P
    Environ Sci Technol; 2004 Dec; 38(23):6283-9. PubMed ID: 15597883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructural alterations in midgut and Malpighian tubules of Boettcherisca peregrina exposure to cadmium and copper.
    Wu GX; Gao X; Ye GY; Li K; Hu C; Cheng JA
    Ecotoxicol Environ Saf; 2009 May; 72(4):1137-47. PubMed ID: 18397806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for an interaction between p-glycoprotein and cadmium toxicity in cadmium-resistant and -susceptible strains of Drosophila melanogaster.
    Callaghan A; Denny N
    Ecotoxicol Environ Saf; 2002 Jul; 52(3):211-3. PubMed ID: 12297081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of 35S-labelled copper-, zinc-and cadmium-thionein in the rat.
    Bremner I; Hoekstra WG; Davies NT; Young BW
    Chem Biol Interact; 1978 Dec; 23(3):355-67. PubMed ID: 719815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional signatures in response to wheat germ agglutinin and starvation in Drosophila melanogaster larval midgut.
    Li HM; Sun L; Mittapalli O; Muir WM; Xie J; Wu J; Schemerhorn BJ; Sun W; Pittendrigh BR; Murdock LL
    Insect Mol Biol; 2009 Feb; 18(1):21-31. PubMed ID: 19196346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intestinal and hepatic binding of cadmium in the neonatal rat.
    Holt D; Webb M
    Arch Toxicol; 1983 Apr; 52(4):291-301. PubMed ID: 6870542
    [No Abstract]   [Full Text] [Related]  

  • 20. Whole-genome expression analysis in the third instar larval midgut of Drosophila melanogaster.
    Harrop TW; Pearce SL; Daborn PJ; Batterham P
    G3 (Bethesda); 2014 Sep; 4(11):2197-205. PubMed ID: 25193493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.