These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25184057)

  • 41. Monte-Carlo simulation of the Siemens Artiste linear accelerator flat 6 MV and flattening-filter-free 7 MV beam line.
    Sadrollahi A; Nuesken F; Licht N; Rübe C; Dzierma Y
    PLoS One; 2019; 14(1):e0210069. PubMed ID: 30620742
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dose Enhancement for the Flattening-Filter-Free and Flattening-Filter Photon Beams in Nanoparticle-Enhanced Radiotherapy: A Monte Carlo Phantom Study.
    Martelli S; Chow JCL
    Nanomaterials (Basel); 2020 Mar; 10(4):. PubMed ID: 32235369
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Measurement and comparison of head scatter factor for 7 MV unflattened (FFF) and 6 MV flattened photon beam using indigenously designed columnar mini phantom.
    Ashokkumar S; Nambiraj A; Sinha SN; Yadav G; Raman K; Bhushan M; Thiyagarajan R
    Rep Pract Oncol Radiother; 2015; 20(3):170-80. PubMed ID: 25949220
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Part I: Out-of-field dose mapping for 6X and 6X-flattening-filter-free beams on the TrueBeam for extended distances.
    Wijesooriya K
    Med Phys; 2019 Feb; 46(2):868-876. PubMed ID: 30589941
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of secondary electron generation on dose enhancement in Lipiodol with and without a flattening filter.
    Kawahara D; Ozawa S; Saito A; Kimura T; Suzuki T; Tsuneda M; Tanaka S; Nakashima T; Ohno Y; Murakami Y; Nagata Y
    J Appl Clin Med Phys; 2018 Mar; 19(2):211-217. PubMed ID: 29450985
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of surface dose delivered by 7 MV-unflattened and 6 MV-flattened photon beams.
    Sigamani A; Nambiraj A
    Rep Pract Oncol Radiother; 2017; 22(3):243-250. PubMed ID: 28479873
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combining tissue-phantom ratios to provide a beam-quality specifier for flattening filter free photon beams.
    Dalaryd M; Knöös T; Ceberg C
    Med Phys; 2014 Nov; 41(11):111716. PubMed ID: 25370630
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Technical Note: Flattening filter free beam from Halcyon linac: Evaluation of the profile parameters for quality assurance.
    Fogliata A; Cayez R; Garcia R; Khamphan C; Reggiori G; Scorsetti M; Cozzi L
    Med Phys; 2020 Aug; 47(8):3669-3674. PubMed ID: 32367534
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Commissioning an Elekta Versa HD linear accelerator.
    Narayanasamy G; Saenz D; Cruz W; Ha CS; Papanikolaou N; Stathakis S
    J Appl Clin Med Phys; 2016 Jan; 17(1):179-191. PubMed ID: 26894351
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Beam Characterization of 10-MV Photon Beam from Medical Linear Accelerator without Flattening Filter.
    Shimozato T; Aoyama Y; Matsunaga T; Tabushi K
    J Med Phys; 2017; 42(2):65-71. PubMed ID: 28706351
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Current status and future perspective of flattening filter free photon beams.
    Georg D; Knöös T; McClean B
    Med Phys; 2011 Mar; 38(3):1280-93. PubMed ID: 21520840
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monte Carlo evaluation of the potential benefits of flattening filter free beams from the Oncor® clinical linear accelerator.
    Asadi A; Razavi-Ratki SK; Jabbari K; Najafzadeh M; Nickfarjam A
    J Xray Sci Technol; 2018; 26(2):281-302. PubMed ID: 29562568
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PERIPHERAL SURFACE DOSE FROM A LINEAR ACCELERATOR: RADIOCHROMIC FILM EXPERIMENTAL MEASUREMENTS OF FLATTENING FILTER FREE VERSUS FLATTENED BEAMS.
    García-Hernández T; Vicedo-González A; Sánchez-Nieto B; Romero-Expósito M; Roselló-Ferrando J
    Radiat Prot Dosimetry; 2020 Jun; 188(3):285-298. PubMed ID: 31922571
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of k
    de Prez L; de Pooter J; Jansen B; Perik T; Wittkämper F
    Phys Med Biol; 2018 Feb; 63(4):045023. PubMed ID: 29461974
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Determination of an inflection point for a dosimetric analysis of unflattened beam using the first principle of derivatives by python code programming.
    Shende R; Gupta G; Macherla S
    Rep Pract Oncol Radiother; 2019; 24(5):432-442. PubMed ID: 31388337
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Polarity correction factor for flattening filter free photon beams in several cylindrical ionization chambers.
    Ogata T; Uehara K; Nakayama M; Tsudou S; Masutani T; Okayama T
    Radiol Phys Technol; 2016 Jul; 9(2):187-92. PubMed ID: 26873138
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determination of inflection points of CyberKnife dose profiles within acceptability criteria of deviations in measurements.
    Sarıgül N; Yedekçi FY; Yeğiner M; Akyol F; Utku H
    Rep Pract Oncol Radiother; 2020; 25(1):6-12. PubMed ID: 32051680
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A comparison between direct TMR measurements and TMRs calculated from PDDs using BJR Supplement 25 data for flattened and unflattened photon beams.
    Sutherland B; Middlebrook N; Kairn T; Hill B
    Australas Phys Eng Sci Med; 2015 Sep; 38(3):503-7. PubMed ID: 26123946
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A universal parameterized gradient-based method for photon beam field size determination.
    Lebron S; Yan G; Li J; Lu B; Liu C
    Med Phys; 2017 Nov; 44(11):5627-5637. PubMed ID: 28887827
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ion-recombination correction for different ionization chambers in high dose rate flattening-filter-free photon beams.
    Lang S; Hrbacek J; Leong A; Klöck S
    Phys Med Biol; 2012 May; 57(9):2819-27. PubMed ID: 22510780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.