BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25184415)

  • 1. Flue-gas-influenced heavy metal bioaccumulation by the indigenous microalgae Desmodesmus communis LUCC 002.
    Palanisami S; Lee K; Balakrishnan B; Nam PK
    Environ Technol; 2015; 36(1-4):463-9. PubMed ID: 25184415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO
    Aslam A; Thomas-Hall SR; Mughal T; Zaman QU; Ehsan N; Javied S; Schenk PM
    J Environ Manage; 2019 Jul; 241():243-250. PubMed ID: 31005725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving growth rate of microalgae in a 1191m(2) raceway pond to fix CO2 from flue gas in a coal-fired power plant.
    Cheng J; Yang Z; Huang Y; Huang L; Hu L; Xu D; Zhou J; Cen K
    Bioresour Technol; 2015 Aug; 190():235-41. PubMed ID: 25958147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO2 , NOx and SOx removal from flue gas via microalgae cultivation: a critical review.
    Yen HW; Ho SH; Chen CY; Chang JS
    Biotechnol J; 2015 Jun; 10(6):829-39. PubMed ID: 25931246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Progress in biofixation of CO2 from combustion flue gas by microalgae].
    Zhang Y; Zhao B; Xiong K; Zhang Z; Hao X; Liu T
    Sheng Wu Gong Cheng Xue Bao; 2011 Feb; 27(2):164-71. PubMed ID: 21650040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures.
    Chiu SY; Kao CY; Huang TT; Lin CJ; Ong SC; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2011 Oct; 102(19):9135-42. PubMed ID: 21802285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal control in microalgae cultivation with power plant flue gas entering into raceway pond.
    Sun J; Cheng J; Yang Z; Zhou J
    Environ Sci Pollut Res Int; 2020 Oct; 27(30):37357-37362. PubMed ID: 32144702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ.
    Yadav G; Karemore A; Dash SK; Sen R
    Bioresour Technol; 2015 Sep; 191():399-406. PubMed ID: 25921786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon dioxide capture strategies from flue gas using microalgae: a review.
    Thomas DM; Mechery J; Paulose SV
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):16926-40. PubMed ID: 27397026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological CO
    Duarte JH; de Morais EG; Radmann EM; Costa JAV
    Bioresour Technol; 2017 Jun; 234():472-475. PubMed ID: 28342576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification and improvement of microalgae strains for strengthening CO
    Cheng J; Zhu Y; Zhang Z; Yang W
    Bioresour Technol; 2019 Nov; 291():121850. PubMed ID: 31358426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Adaptability of oleaginous microalgae Chlorococcum alkaliphilus MC-1 cultivated with flue gas].
    Yang X; Xiang W; Zhang F; Wu H; He H; Fan J
    Sheng Wu Gong Cheng Xue Bao; 2013 Mar; 29(3):370-81. PubMed ID: 23789278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review.
    Huang G; Chen F; Kuang Y; He H; Qin A
    Appl Biochem Biotechnol; 2016 Mar; 178(6):1220-38. PubMed ID: 26695777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs.
    Douskova I; Doucha J; Livansky K; Machat J; Novak P; Umysova D; Zachleder V; Vitova M
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):179-85. PubMed ID: 19096837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flue gas compounds and microalgae: (bio-)chemical interactions leading to biotechnological opportunities.
    Van Den Hende S; Vervaeren H; Boon N
    Biotechnol Adv; 2012; 30(6):1405-24. PubMed ID: 22425735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas.
    Aslam A; Thomas-Hall SR; Mughal TA; Schenk PM
    Bioresour Technol; 2017 Jun; 233():271-283. PubMed ID: 28285218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds.
    Zhu B; Sun F; Yang M; Lu L; Yang G; Pan K
    Bioresour Technol; 2014 Dec; 174():53-9. PubMed ID: 25463781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixed microalgae consortia growth under higher concentration of CO
    Aslam A; Thomas-Hall SR; Manzoor M; Jabeen F; Iqbal M; Uz Zaman Q; Schenk PM; Asif Tahir M
    J Photochem Photobiol B; 2018 Feb; 179():126-133. PubMed ID: 29367147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp.
    Kao CY; Chen TY; Chang YB; Chiu TW; Lin HY; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2014 Aug; 166():485-93. PubMed ID: 24950094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of simulated flue gas on components of Scenedesmus raciborskii WZKMT.
    Li XK; Xu JL; Guo Y; Zhou WZ; Yuan ZH
    Bioresour Technol; 2015 Aug; 190():339-44. PubMed ID: 25965950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.